首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K H Pesis  Y Wei  M Lewis  H R Matthews 《FEBS letters》1988,239(1):151-154
Nuclear extracts of the true slime mold, Physarum polycephalum, show protein histidine kinase activity towards exogenous histones [(1985) J. Biol. Chem. 260, 16106-16113]. Physarum microplasmodia were labeled with [32P]phosphate in vivo and two basic proteins containing alkali-stable phosphate were detected. The labeled proteins comigrated with Physarum histones H1 (approximately) and H2A and phosphoamino acid analysis showed that each protein contained [32P]-phosphohistidine. The H2A-like protein was also labeled in isolated nuclei incubated with [35S]thio-ATP. We conclude that some Physarum nuclear proteins contain phosphohistidine.  相似文献   

2.
A 70-kDa protein cross-reacted with anti-bovine vitronectin was isolated from slime mold Physarum polycephalum. The NH2-terminal amino acid sequence of the protein, referred to as Physarum vitronectin-like protein, did not share any homology with those of animal vitronectins. It had cell-spreading activity, which was specifically inhibited by an Arg-Gly-Asp (RGD)-containing peptide.  相似文献   

3.
Lipopolysaccharides (LPS), added as whole bacteria to estuarine sediments, were extracted efficiently by both trichloroacetic acid (TCA) and phenol-water (PW). Amounts of recovered LPS were measured indirectly by analyses for ketodeoxyoctonate (KDO), -hydroxymyristic acid, immunodominant sugars and anticomplementary (AC) activity towards human complement. TCA was judged to be better than PW for routine extraction of sediments because, although it yielded 10–20% less LPS, it avoided contamination with non-LPS, high-molecular weight material with high AC activity. In sediment samples taken as cores from estuarine beaches, the concentration of endogenous LPS diminished rapidly with depth below the topmost 1 cm. KDO disappeared more rapidly with depth than AC activity. When known LPS was incubated with estuarine beach mud at 20–22°C for 3 weeks there was extensive biodegradation of both the lipid and polysaccharide components, the latter more rapidly. LPS-degrading bacteria were isolated.  相似文献   

4.
The composition and the nature of the linkage of fatty acids and the Shwartzman activity of lipopolysaccharide (LPS) preparations derived from oral gram-negative bacteria including Bacteroides gingivalis, Bacteroides loesheii, Eikenella corrodens, Fusobacterium nucleatum, and Actinobacillus actinomycetemcomitans were examined. 3-Hydroxylated and nonhydroxy fatty acids of various chain lengths were found in all of the LPS preparations. All nonhydroxy fatty acids were found to be ester-bound, and part of the 3-hydroxy fatty acids in the LPS of B. gingivalis, E. corrodens, F. nucleatum, and A. actinomycetemcomitans were shown to be involved in ester linkage. It was also suggested that the hydroxy group of the ester-bound 3-hydroxy fatty acid of the LPS of F. nucleatum and A. actinomycetemcomitans is at least partly substituted by another fatty acid, but in the LPS of B. gingivalis and E. corrodens it is not. The main amide-linked fatty acid of the LPS of B. gingivalis, E. corrodens, F. nucleatum, and A. actinomycetemcomitans was 3-hydroxyheptadecanoic, 3-hydroxydodecanoic, 3-hydroxyhexadecanoic, and 3-hydroxytetradecanoic acid, respectively. The results of the Shwartzman assay showed that the E. corrodens LPS was the most active among the preparations tested, and that the Shwartzman toxicity of Bacteroides LPS is extremely low.  相似文献   

5.
Physarum polycephalum is one of few non-animal organisms capable of synthesizing tetrahydrobiopterin from GTP. Here we demonstrate developmentally regulated expression of quinoid dihydropteridine reductase (EC 1.6.99.7), an enzyme required for recycling 6,7-[8H]-dihydrobiopterin. Physarum also expresses phenylalanine-4-hydroxylase activity, an enzyme that depends on dihydropteridine reductase. The 24.4 kDa Physarum dihydropteridine reductase shares 43% amino acid identity with the human protein. A number of residues important for function of the mammalian enzyme are also conserved in the Physarum sequence. In comparison to sheep liver dihydropteridine reductase, purified recombinant Physarum dihydropteridine reductase prefers pterin substrates with a 6-(1', 2'-dihydroxypropyl) group. Our results demonstrate that Physarum synthesizes, utilizes and metabolizes tetrahydrobiopterin in a way hitherto thought to be restricted to the animal kingdom.  相似文献   

6.
A cDNA for NADH-cytochrome b(5) reductase of Physarum polycephalum was cloned from a cDNA library, and the nucleotide sequence of the cDNA was determined (accession no. AB259870). The DNA of 943 base pairs contains 5'- and 3'-noncoding sequences, including a polyadenylation sequence, and a coding sequence of 843 base pairs. The amino acid sequence (281 residues) deduced from the nucleotide sequence was 25 residues shorter than those of vertebrate enzymes. Nevertheless, the recombinant Physarum enzyme showed enzyme activity comparable to that of the human enzyme. The recombinant Physarum enzyme showed a pH optimum of around 6.0, and apparent K(m) values of 2 microM and 14 microM for NADH and cytochrome b(5) respectively. The purified recombinant enzyme showed a typical FAD-derived absorption peak of cytochrome b(5) reductase at around 460 nm, with a shoulder at 480 nm. These results suggest that the Physarum enzyme plays an important role in the organism.  相似文献   

7.
The cell wall component of Pseudomonas solanacearum that induces disease resistance in tobacco was highly heat stable at neutral or alkaline pH but highly labile at acid pH. Activity was unaffected by nucleases and proteases but destroyed by a mixture of beta-glycosidases. Washing of bacterial cell walls released a lipopolysaccharide (LPS) fraction with high inducer activity. Purified LPS, extracted by a variety of procedures from whole cells, isolated cell walls, and culture filtrates of both smooth and rough forms of P. solanacearum, induced disease resistance in tobacco at concentrations as low as 50 microgram/ml. The LPS from the non-plant pathogens Escherichia coli B, E. coli K, and Serratia marcescens was also active. Cell wall protein, free phospholipid, and nucleic acids were not necessary for activity. Moreover, since LPS from rough forms was active, the O-specific polysaccharide of the LPS was not required for activity. Hydrolysis of the remaining core-lipid A linkage or deacylation of lipid A destroyed inducer activity. When injected into tobacco leaves, purified LPS attached to tobacco mesophyll cell walls and induced ultrastructural changes in the host cell similar to those induced by attachment of whole heat-killed bacteria.  相似文献   

8.
A factor termed Physarum actinin was isolated and partially purified from plasmodia of a myxomycete, Physarum polycephalum. When Physarum actinin was mixed with purified Physarum or rabbit striated muscle G-actin in a weight ratio of about 1 actinin to 9 actin and then the polymerization of G-actin induced, G-actin polymerized to the ordinary F-actin on addition of 0.1 M KCl. However, it polymerized to Mg-polymer on addition of 2 mM MgCl2. The reduced viscosity (etasp/C) of the Mg-polymer was 1.2 dl/g, about one-seventh of that of the F-actin (7.4 dl/g). The sedimentation coefficient of the Mg-polymer was 22.8 S, almost the same as that of the F-actin (29.4 S). The Mg-polymer showed the specific ATPase activity of the order of 1 . 10(-3) mumol ATP/mg actin per min. It was shown that Physarum actinin copolymerized with G-actin to form Mg-polymer on addition of 2 mM MgCl2. The molecular weights of Physarum actinin were about 90 000 in salt-free or slat solutions and 43 000 in a dodecyl sulfate solution. The range of salting out with ammonium sulfate was 50--65% saturation, which was different from that of Physarum actin (15--35% saturation). Physarum actinin did not interact with Physarum myosin or muscle heavy meromyosin. When the weight ratio of actinin to actin increased, the flow birefringence of the formed Mg-polymer decreased, and it became almost zero at the weight ratio of 1 actinin to 5 actin. ATPase activity reached the maximum level (2.2 . 10(-3) mumol ATP/mg actin per min) at the same ratio. On the addition of Physarum actinin to purified Physarum F-actin which had been polymerized on addition of 2 mM MgCl2 the viscosity decreased rapidly, suggesting that the F-actin filaments were broken in the smaller fragments or that they transformed to Mg-polymers. A factor with properties similar to Physarum actinin was isolated from acetone powder of sea urchin eggs.  相似文献   

9.
The cell wall component of Pseudomonas solanacearum that induces disease resistance in tobacco was highly heat stable at neutral or alkaline pH but highly labile at acid pH. Activity was unaffected by nucleases and proteases but destroyed by a mixture of beta-glycosidases. Washing of bacterial cell walls released a lipopolysaccharide (LPS) fraction with high inducer activity. Purified LPS, extracted by a variety of procedures from whole cells, isolated cell walls, and culture filtrates of both smooth and rough forms of P. solanacearum, induced disease resistance in tobacco at concentrations as low as 50 microgram/ml. The LPS from the non-plant pathogens Escherichia coli B, E. coli K, and Serratia marcescens was also active. Cell wall protein, free phospholipid, and nucleic acids were not necessary for activity. Moreover, since LPS from rough forms was active, the O-specific polysaccharide of the LPS was not required for activity. Hydrolysis of the remaining core-lipid A linkage or deacylation of lipid A destroyed inducer activity. When injected into tobacco leaves, purified LPS attached to tobacco mesophyll cell walls and induced ultrastructural changes in the host cell similar to those induced by attachment of whole heat-killed bacteria.  相似文献   

10.
Hemolin, a plasma protein from lepidopteran insects, is composed of four immunoglobulin domains. Its synthesis is induced by microbial challenge. We investigated the biological functions of hemolin in Manduca sexta. It was found to bind to the surface of bacteria and yeast, and caused these micro-organisms to aggregate. Hemolin was demonstrated to bind to lipopolysaccharide (LPS) from Gram-negative bacteria and to lipoteichoic acid from Gram-positive bacteria. Binding of hemolin to smooth-type forms of LPS was competed for efficiently by lipoteichoic acid and by rough mutant (Ra and Rc) forms of LPS, which differ in polysaccharide length. Binding of hemolin to LPS was partially inhibited by calcium and phosphate. Hemolin bound to the lipid A component of LPS, and this binding was completely blocked by free phosphate. Our results suggest that hemolin has two binding sites for LPS, one that interacts with the phosphate groups of lipid A and one that interacts with the O-specific antigen and the outer-core carbohydrates of LPS. The binding properties of M. sexta hemolin suggest that it functions as a pattern-recognition protein with broad specificity in the defense against micro-organisms.  相似文献   

11.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

12.
A major problem in the development of vaccines against Gram-negative bacteria is the endotoxic -activity of lipopolysaccharide (LPS), which is determined by its lipid A moiety. Nevertheless, LPS would be an interesting vaccine component because of its immune-stimulating properties. In the present study, we have changed the fatty acid composition of Neisseria meningitidis LPS by replacing the lpxA gene of strain H44/76 with the Escherichia coli or Pseudomonas aeruginosa homologue. The majority of the O-linked 3-OH C12 in N. meningitidis lipid A was replaced by 3-OH C14 (strain HA01E) and 3-OH C10 (strain HA25P) respectively. Both strains, but most notably strain HA01E, had reduced amounts of LPS compared with the wild-type strain. In addition, growth was severely impaired for HA01E. The major outer membrane proteins were expressed normally. Outer membrane complexes of both strains normalized on their LPS content showed a 10-fold reduction in their ability to induce tumour necrosis factor (TNF)-alpha. Immunogenicity studies in BALB/c mice revealed that the adjuvant activity of the LPS was not affected. Thus, the replacement of the O-linked fatty acids in meningococcal lipid A results in immunogenic outer membranes with reduced endotoxic activity, more suitable for use in outer membrane vesicle vaccines.  相似文献   

13.
A full-length cDNA coding a calmodulin (CaM)-dependent protein kinase gene was cloned from Physarum plasmodia poly(A)-RNA by polymerase chain reaction with the oligonucleotide primers that were designed after the amino acid sequence of highly conserved regions of myosin light-chain kinase. Sequence analysis of the cDNA revealed that this Physarum kinase was a 42,519-Da protein with an ATP-binding domain, Ser/Thr kinase active site signature, and CaM-binding domain. Expression of the cDNA in Escherichia coli demonstrated that the Physarum kinase in the presence of Ca2+ and CaM phosphorylated the recombinant phosphorylatable light chain (PLc) of Physarum myosin II. The peptide analysis after proteolysis of the phosphorylated PLc indicated that Ser 18 was phosphorylated. The site was confirmed by the failure of phosphorylation of PLc, the Ser 18 of which was replaced by Ala. The physiological role of the kinase will be discussed with special reference to the 55-kDa kinase, which had been previously purified from Physarum plasmodia for phosphorylated PLc.  相似文献   

14.
The lipopolysaccharides (LPS) of three species of purple sulfur bacteria (Chromatiaceae), Thiocystis violacea, Thiocapsa pfennigii, and the moderately thermophilic bacterium Chromatium tepidum, were isolated. The LPS of Thiocystis violacea and Chromatium tepidum contained typical O-specific sugars, indicating O-chains. Long O-chains were confirmed for these species by sodium deoxycholate gel electrophoresis of their LPS. Thiocapsa pfennigii, however, had short or no O-chains. The core region of the LPS of all three species comprised D-glycero-D-mannoheptose as the only heptose and 2-keto-3-deoxyoctonate. The lipid A, obtained from the LPS by mild acid hydrolysis, contained glucosamine as the main amino sugar. Amide-bound 3-hydroxymyristic acid was the only hydroxy fatty acid. The main ester-bound fatty acid in all lipid A fractions was 12:0. Mannose and small amounts of 2,3-diamino-2,3-dideoxy-D-glucose were common constituents of the lipid A of the three Chromatiaceae species investigated. All lipid A fractions were essentially free of phosphate.  相似文献   

15.
Rosenfeld Y  Sahl HG  Shai Y 《Biochemistry》2008,47(24):6468-6478
Endotoxin [lipopolysaccharide (LPS)] covers more than 90% of the outer monolayer of the outer membrane of Gram-negative bacteria, and it plays a dual role in its pathogenesis: as a protective barrier against antibiotics and as an effector molecule, which is recognized by and activates the innate immune system. The ability of host-defense antimicrobial peptides to bind LPS on intact bacteria and in suspension has been implicated in their antimicrobial and LPS detoxification activities. However, the mechanisms involved and the properties of the peptides that enable them to traverse the LPS barrier or to neutralize LPS endotoxic activity are not yet fully understood. Here we investigated a series of antimicrobial peptides and their analogues with drastically altered sequences and structures, all of which share the same amino acid composition (K 6L 9). The list includes both all- l-amino acid peptides and their diastereomers (composed of both l- and d-amino acids). The peptides were investigated functionally for their antibacterial activity and their ability to block LPS-dependent TNF-alpha secretion by macrophages. Fluorescence spectroscopy and transmission electron microscopy were used to detect their ability to bind LPS and to affect its oligomeric state. Their secondary structure was characterized in solution, in LPS suspension, and in LPS multibilayers by using CD and FTIR spectroscopy. Our data reveal specific biophysical properties of the peptides that are required to kill bacteria and/or to detoxify LPS. Besides shedding light on the mechanisms of these two important functions, the information gathered should assist in the development of AMPs with potent antimicrobial and LPS detoxification activities.  相似文献   

16.
Lipopolysaccharides of the cyanobacterium Microcystis aeruginosa   总被引:2,自引:0,他引:2  
Lipopolysaccharides (LPS) of two isolates of Microcystis aeruginosa were extracted with phenol/water and purified. Cesium chloride gradient ultracentrifugation of these preparations yielded only one fraction. The LPS contained significant amounts of 3-deoxy-D-manno-octulosonic acid, glucose, 3-deoxy sugars, glucosamine, fatty acids, fatty acid esters, hexoses, and phosphate. Heptose, a characteristic sugar component of the polysaccharide moiety of LPS of most gram-negative bacteria was absent. Lipopolysaccharides and lipid A hydrolysate of LPS preparations were active in mouse lethality and Limulus lysate gelation. The lipid A moiety was slightly less active in toxicity and Limulus lysate gelation assays than the intact LPS. The LPS and lipid A moiety of the two isolates of M. aeruginosa were less active in toxicity in mice and Limulus test than LPS of Salmonella abortus equi.  相似文献   

17.
In Escherichia coli the gene htrB codes for an acyltransferase that catalyses the incorporation of laurate into lipopolysaccharide (LPS) as a lipid A substituent. We describe the cloning, expression and characterization of a Porphyromonas gingivalis htrB homologue. When the htrB homologue was expressed in wild-type E. coli or a mutant strain deficient in htrB, a chimeric LPS with altered lipid A structure was produced. Compared with wild-type E. coli lipid A, the new lipid A species contained a palmitate (C16) in the position normally occupied by laurate (C12) suggesting that the cloned gene performs the same function as E. coli htrB but preferentially transfers the longer-chain palmitic acid that is known to be present in P. gingivalis LPS. LPS was purified from wild-type E. coli, the E. coli htrB mutant strain and the htrB mutant strain expressing the P. gingivalis acyltransferase. LPS from the palmitate bearing chimeric LPS as well as the htrB mutant exhibited a reduced ability to activate human embryonic kidney 293 (HEK293) cells transfected with TLR4/MD2. LPS from the htrB mutant also had a greatly reduced ability to stimulate interleukin-8 (IL-8) secretion in both endothelial cells and monocytes. In contrast, the activity of LPS from the htrB mutant bacteria expressing the P. gingivalis gene displayed wild-type activity to stimulate IL-8 production from endothelial cells but a reduced ability to stimulate IL-8 secretion from monocytes. The intermediate activation observed in monocytes for the chimeric LPS was similar to the pattern seen in HEK293 cells expressing TLR4/MD2 and CD14. Thus, the presence of a longer-chain fatty acid on E. coli lipid A altered the activity of the LPS in monocytes but not endothelial cell assays and the difference in recognition does not appear to be related to differences in Toll-like receptor utilization.  相似文献   

18.
Lipopolysaccharide (LPS) endotoxin is implicated as the bacterial product responsible for the clinical syndrome of Gram-negative septicemia. Although the lipid A domain of LPS appears to be responsible for the toxicity of endotoxin, lipid A from the photosynthetic bacterium Rhodobacter sphaeroides (RSLA) and a disaccharide precursor of lipid A from enteric bacteria, termed lipid IVA, have little activity on human cells. Using the human promonomyelocytic cell line THP-1 and human monocytic cells, we now show that both lipid IVA and RSLA are antagonists of LPS. Complete, apparently competitive, inhibition of LPS activity is possible at a 10-100-fold excess of antagonist, as judged by measuring the release of cytokines and prostaglandin E2. Both antagonists prevent monocyte stimulation by endotoxin extracted from a variety of Gram-negative bacteria. Cells pretreated with either inhibitor and subsequently washed still show attenuated responses to LPS. Stimulation of monocytes by whole Gram-negative bacteria is also antagonized in a dose-dependent manner. Lipid X has no inhibitory effect in the same dose range as lipid IVA and RSLA. These findings rule out LPS sequestration as the explanation for the observed antagonism. Neither inhibitor alters monocyte stimulation by phorbol 12-myristate 13-acetate, Staphylococcus aureus, or purified protein derivative, demonstrating specificity for LPS. Although RSLA appears to inhibit LPS when tested with macrophages from both humans and mice, lipid IVA had the unique ability to act as an LPS antagonist with human-derived cells but to exhibit LPS-like effects with murine-derived cells. Like LPS, lipid IVA stimulated the release of both tumor necrosis factor alpha and arachidonic acid from murine-derived RAW 264.7 macrophage tumor cells. The range of concentrations necessary for lipid IVA to induce LPS-like effects in murine cells was similar to that necessary to antagonize the actions of LPS in human monocytes. The agonist activities of lipid IVA were completely inhibitable by RSLA. This unique species-dependent pharmacology observed with lipid IVA may reflect differences between human and murine LPS receptors. RSLA and lipid IVA may be useful in defining the role of LPS in Gram-negative bacterial infections and may prove to be prototypical therapeutic agents for the treatment of Gram-negative septicemia.  相似文献   

19.
Chromosomal basic proteins were isolated from amoebal and plasmodial stages of the acellular slime mold Physarum polycephalum. Polyacrylamide electrophoresis on high resolution acid-urea gels separated the five histone fractions in the sequence H1, H2A, H2B, H3, and H4. Under these electrophoretic conditions Physarum histones migrated more like plant (rye) than animal (calf) histones. Furthermore, Physarum histones H1, H2A, and H2B have higher molecular weights on sodium dodecyl sulfate (SDS) gels than the corresponding calf fractions. No differences were detected between amoebal and plasmodial histones on either acid-urea or SDS-polyacrylamide gel electrophoresis. Amoebal basic proteins were fractionated by exclusion chromatography. The five histone fractions plus another major acid-soluble chromosomal protein (AS) were isolated. The Physarum core histones had amino acid compositions more closely resembling those of the calf core histones than of rye, yeast, or Dictyostelium. Although generally similar in composition to the plant and animal H1 histones, the Physarum H1 had a lower lysine content. The AS protein was extracted with 5% perchloric acid or 0.5 M NaCl, migrated between histones H3 and H4 on acid-urea polyacrylamide gels, and had an apparent molecular weight of 15 900 on SDS gels. It may be related to a protein migrating near H1. Both somewhat resembled the high mobility group proteins in amino acid composition.  相似文献   

20.
The endotoxic activity of the lipopolysaccharides (LPS) with defined chemical structure from Yersinia pestis strains of various subspecies differing in their epidemic potential was studied. The LPS of two strains of Y. pestis ssp. caucasica and ssp. altaica, whose structures have not been studied earlier, were analyzed by high-resolution mass spectrometry. In addition to reported structural changes, an increase in the degree of LPS phosphorylation was observed when strain I-2377 (ssp. altaica) was cultivated at an elevated temperature. A high tumor necrosis factor alpha(TNF-alpha)-inducing activity observed for LPS samples from Y. pestis cultures grown at 25 degrees C correlated with an increased degree of lipid A acylation, particularly, with the presence of the hexaacyl form of lipid A, which was absent from the LPS when bacteria were cultivated at 37 degrees C. No correlation was found between the lethal toxicity of the LPS in vivo and its ability to induce TNF-alpha production in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号