首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calelectrin, a calcium-dependent membrane-binding protein of subunit molecular weight 32,000 has been isolated from the electric organ of Torpedo, and shown to occur in cholinergic neurones and in bovine adrenal medulla. In this study a monospecific antiserum against the Torpedo protein has been used to study the localization of calelectrin in the rat adrenal gland. The cortex was not stained, whereas in the medulla the cytoplasm of the chromaffin cells was stained in a particulate manner. An identical staining pattern was obtained with an antiserum against the chromaffin granule enzyme dopamine beta-hydroxylase, although the two antisera did not cross-react with the same antigen. The purified protein aggregates bovine chromaffin granule membranes and cholinergic synaptic vesicles and also self aggregates in a calcium-dependent manner. Negative staining results demonstrate that calcium induces a transformation of the purified protein from circular structures 30-80 nm in diameter into a highly aggregated structure. Calelectrin may have a structural or regulatory role in the intracellular organization of secretory cells.  相似文献   

2.
The nicotinic acetylcholine receptor and a receptor-associated protein of 43 kDa are the major proteins present in postsynaptic membranes isolated from Torpedo electric organ. Immunochemical analyses indicated that a protein sharing antigenic determinants with the receptor-associated protein is also present at receptor clusters of muscle cell lines and postsynaptic membranes of vertebrate neuromuscular junctions. We now provide definitive proof that a homolog of the 43-kDa protein exists in mammals. Complimentary DNA clones encoding the complete protein sequence have been isolated from the mouse muscle cell line, BC3H1. We heretofore refer to these proteins as nicotinic receptor-associated proteins at synapses or N-RAP-syns. The deduced sequence of mouse RAPsyn has 412 amino acids and a molecular mass of 46,392 daltons. The overall identity with Torpedo RAPsyn is 70%; some regions are extremely well conserved and are therefore postulated to be functionally important. Important domains, including the amino terminus and a cAMP-dependent protein kinase phosphorylation site, are conserved between species. Several structural features are consistent with the proposal that RAPsyn is a peripheral membrane protein that associates with membranes by virtue of covalently bound myristate. Although multiple mRNAs were previously identified in Torpedo electric organ, RNA blot analysis reveals a single polyadenylated RAPsyn mRNA of approximately equal to 2.0 kilobases in newborn and 4-week-old mouse muscle. Finally, genomic DNA blot analysis indicates that a single N-RAPsyn gene is present in the mouse genome.  相似文献   

3.
Rabbits were immunized with cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata. The resultant antiserum had one major antibody activity against an antigen called the Torpedo vesicle antigen. This antigen could not be demonstrated in muscle, liver or blood and is therefore, suggested to be nervous-tissue specific. The vesicle antigen was quantified in various parts of the nervous system and in subcellular fractions of the electric organ of Torpedo marmorata and was found to be highly enriched in synaptic vesicle membranes. The antigen bound to concanavalin A, thereby demonstrating the presence of a carbohydrate moiety. By means of charge-shift electrophoresis, amphiphilicity was demonstrated, indicating that the Torpedo vesicle antigen is an intrinsic membrane protein. The antigen was immunochemically unrelated to other brain specific proteins such as 14-3-2, S-100, the glial fibrillary acidic protein and synaptin. Furthermore, it was unrelated to two other membrane proteins, the nicotinic acetylcholine receptor and acetylcholinesterase, present in Torpedo electric organ. The antiserum against Torpedo synaptic vesicles did not react with preparations of rat brain synaptic vesicles or ox adrenal medullary chromaffin granules.  相似文献   

4.
Nirthanan S  Ziebell MR  Chiara DC  Hong F  Cohen JB 《Biochemistry》2005,44(41):13447-13456
The interactions of a photoreactive analogue of benzoylcholine, 4-azido-2,3,5,6-tetrafluorobenzoylcholine (APFBzcholine), with nicotinic acetylcholine receptors (nAChRs) were studied using electrophysiology and photolabeling. APFBzcholine acted as a low-efficacy partial agonist, eliciting maximal responses that were 0.3 and 0.1% of that of acetylcholine for embryonic mouse and Torpedo nAChRs expressed in Xenopus oocytes, respectively. Equilibrium binding studies of [3H]APFBzcholine with nAChR-rich membranes from Torpedo electric organ revealed equal affinities (K(eq) = 12 microM) for the two agonist binding sites. Upon UV irradiation at 254 nm, [3H]APFBzcholine was photoincorporated into the nAChR alpha, gamma, and delta subunits in an agonist-inhibitable manner. Photolabeled amino acids in the agonist binding sites were identified by Edman degradation of isolated, labeled subunit fragments. [3H]APFBzcholine photolabeled gammaLeu-109/deltaLeu-111, gammaTyr-111, and gammaTyr-117 in binding site segment E as well as alphaTyr-198 in alpha subunit binding site segment C. The observed pattern of photolabeling is examined in relation to the predicted orientation of the azide when APFBzcholine is docked in the agonist binding site of a homology model of the nAChR extracellular domain based upon the structure of the snail acetylcholine binding protein.  相似文献   

5.
Creatine kinase isoenzymes from Torpedo californica electric organ, skeletal muscle, and brain were purified and characterized. Torpedo electric organ and skeletal muscle creatine kinase have identical apparent Mr, electrophoretic mobility, and cyanogen bromide fragments. The electrophoretic mobility of the Torpedo creatine kinase was anodal as compared to mammalian MM creatine kinase. No creatine kinase isoenzyme with an electrophoretic mobility similar to mammalian BB creatine kinase was seen in any of the Torpedo tissues examined. Hybridization studies demonstrate the Torpedo electric organ creatine kinase to be composed of identical subunits and capable of producing an enzymatically active heterodimer when combined with canine BB creatine kinase. Creatine kinase from sucrose gradient-purified Torpedo electric organ acetylcholine receptor-rich membranes has an electrophoretic mobility identical with the cytoplasmic isoenzyme and an apparent Mr identical with mammalian MM creatine kinase. Western blot analysis showed Torpedo electric organ skeletal muscle creatine kinase and acetylcholine receptor-enriched membrane creatine kinase reacted with antiserum specific for canine MM creatine kinase. NH2-terminal amino acid sequence determinations show considerable sequence homology between human MM, Torpedo electric organ, chicken MM, and porcine MM creatine kinase. The acetylcholine receptor-associated creatine kinase is, therefore, identical with the cytoplasmic form from the electric organ and is composed of M-subunits.  相似文献   

6.
Immunohistochemical studies have previously shown that both the chick brain and chick ciliary ganglion neurons contain a component which shares antigenic determinants with the main immunogenic region of the nicotinic acetylcholine receptor from electric organ and skeletal muscle. Here we describe the purification and initial characterization of this putative neuronal acetylcholine receptor. The component was purified by monoclonal antibody affinity chromatography. The solubilized component sediments on sucrose gradients as a species slightly larger than Torpedo acetylcholine receptor monomers. It was affinity labeled with bromo[3H]acetylcholine. Labeling was prevented by carbachol, but not by alpha-bungarotoxin. Two subunits could be detected in the affinity-purified component, apparent molecular weights 48 000 and 59 000. The 48 000 molecular weight subunit was bound both by a monoclonal antibody directed against the main immunogenic region of electric organ and skeletal muscle acetylcholine receptor and by antisera raised against the alpha subunit of Torpedo receptor. Evidence suggests that there are two alpha subunits in the brain component. Antisera from rats immunized with the purified brain component exhibited little or no cross-reactivity with Torpedo electric organ or chick muscle acetylcholine receptor. One antiserum did, however, specifically bind to all four subunits of Torpedo receptor. Experiments to be described elsewhere (J. Stollberg et al., unpublished results) show that antisera to the purified brain component specifically inhibit the electrophysiological function of acetylcholine receptors in chick ciliary ganglion neurons without inhibiting the function of acetylcholine receptors in chick muscle cells. All of these properties suggest that this component is a neuronal nicotinic acetylcholine receptor with limited structural homology to muscle nicotinic acetylcholine receptor.  相似文献   

7.
Abstract: Synaptic vesicles isolated from electric ray electric organ have been shown previously to contain a 34-kDa protein that binds azido-ATP, azido-AMP, and N -ethylmaleimide. The protein was found to share similarities with the mitochondrial ADP/ATP carrier and assumed to represent the synaptic vesicle nucleotide transporter. Synaptic vesicles were purified by sucrose density gradient centrifugation and subsequent chromatography on Sephacryl S-1000 from both Torpedo electric organ and bovine brain cerebral cortex. They contained ATP-binding proteins of 35 kDa and 34 kDa, respectively. ATP binding was inhibited by AMP. Both proteins were highly enriched after column chromatography of vesicle proteins of AMP-Sepharose. Antibodies were obtained against both proteins. Antibodies against the bovine brain synaptic vesicle protein of 34 kDa bound specifically to the 35-kDa protein of Torpedo vesicles. An N-terminal sequence obtained against the 34-kDa protein of bovine brain synaptic vesicles identified it as glyceraldehyde-3-phosphate dehydrogenase. The previously observed molecular characteristics of the putative vesicular nucleotide transporter in Torpedo fit those of glyceraldehyde-3-phosphate dehydrogenase. We, therefore, suggest that the protein previously identified as putative nucleotide transporter is, in fact, glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

8.
Acetylcholine receptor-rich membranes from the electric organ of Torpedo californica are enriched in the four different subunits of the acetylcholine receptor and in two peripheral membrane proteins at 43 and 300 kD. We produced monoclonal antibodies against the 300-kD protein and have used these antibodies to determine the location of the protein, both in the electric organ and in skeletal muscle. Antibodies to the 300-kD protein were characterized by Western blots, binding assays to isolated membranes, and immunofluorescence on tissue. In Torpedo electric organ, antibodies to the 300-kD protein stain only the innervated face of the electrocytes. The 300-kD protein is on the intracellular surface of the postsynaptic membrane, since antibodies to the 300-kD protein bind more efficiently to saponin-permeabilized, right side out membranes than to intact membranes. Some antibodies against the Torpedo 300-kD protein cross-react with amphibian and mammalian neuromuscular synapses, and the cross-reacting protein is also highly concentrated on the intracellular surface of the post-synaptic membrane.  相似文献   

9.
We have found that dystrophin is highly concentrated at neuromuscular junctions and innervated membranes of the electric organ of Torpedo californica. In acetylcholine receptor-rich Torpedo membrane preparations dystrophin represents approximately 0.4% of total protein and can be extracted from these membranes by alkaline treatment in the absence of detergent, indicating that it is a peripheral membrane protein. Polyclonal antibodies raised against electrophoretically isolated Torpedo dystrophin cross-react with dystrophin in human muscle and unequivocally discriminate between normal and Duchenne muscular dystrophy patient's muscle. These results indicate that dystrophin is phylogenetically a highly conserved protein and that the relatively abundant dystrophin in electric organ would facilitate further investigations of its structure and function.  相似文献   

10.
Is the acetylcholine releasing protein mediatophore present in rat brain?   总被引:2,自引:0,他引:2  
Mediatophore is a protein purified from the nerve terminal membranes of Torpedo electric organ. It confers to artificial membranes a calcium-dependent mechanism that translocates acetylcholine. When similar reconstitution experiments are applied to rat brain synaptosomal membranes they reveal the presence of mediatophore activity with properties close to those described for the Torpedo protein (extractability, sensitivity to calcium, and effect of the drug cetiedil). The activity was more abundant in synaptosomal membranes than in mitochondrial or myelinic membranes and in cholinergic areas as compared to cerebellum.  相似文献   

11.
Putative Cholinergic-Specific Gangliosides in Guinea Pig Forebrain   总被引:4,自引:2,他引:2  
The nature of the cholinergic-specific antigen Chol-1 recognized by an antiserum raised against Torpedo cholinergic electromotor synaptosomal plasma membranes was investigated in guinea pig forebrain to establish whether it has a gangliosidic nature in guinea pig as in Torpedo. Gangliosides extracted from guinea pig forebrain and extensively purified to eliminate peptide contaminants were effective in inhibiting the selective lysis of the cholinergic subpopulation of cortical synaptosomes induced by the antiserum. Neuraminidase, protease, alkali, and heat treatment did not impair the inhibitory activity of gangliosides. Whereas the antiserum recognized many gangliosides from Torpedo electric organ, the immunostaining of guinea pig forebrain gangliosides separated on TLC showed only two immunopositive bands migrating close to GT1b and GQ. After affinity purification on Torpedo electric organ gangliosides the activity of the antiserum in inducing complement-mediated lysis was increased and it still recognized the two ganglioside bands on TLC. These results strongly suggest the existence of two polysialogangliosides bearing antigenic determinants specific for the cholinergic neurons.  相似文献   

12.
Analysis of acetylcholine receptor clones isolated from a human leg muscle cDNA library, revealed that the alpha-subunit existed as two isoforms. A novel exon, coding for 25 amino acids, was located in the human genomic DNA sequence; its insertion into the alpha-subunit gives the new isoform of 462 amino acids. In addition, mRNAs for the two isoforms were found in equal proportions in poly(A)+ RNA obtained from three further sources including partially denervated and innervated human muscle and the rhabdomyosarcoma cell line TE671. Both protein isoforms can be expressed in E. coli. No evidence of a sequence related to that of the new exon was found in cDNA derived from poly(A)+ RNA isolated from fetal calf or embryonic chick muscle or Torpedo marmorata electric organ.  相似文献   

13.
Calelectrin is a new calcium-binding protein isolated from the cholinergic nerve terminals of the electric organ of Torpedo marmorata, which is widely distributed in nervous tissues and selectively binds to membranes, self-aggregates, and promotes calcium-induced membrane aggregation as a function of calcium concentration. We now show by immunofluorescence and immune blotting procedures that this protein is also present in human blood cells. Immunofluorescence demonstrates calelectrin in all human leucocytes, including mononuclear cells, but not in platelets or in erythrocytes. The immunofluorescence indicates an exclusively cytoplasmic location of calelectrin with a diffuse distribution and no primary association with the cytoskeleton or the cell membranes. SDS-polyacrylamide gel electrophoresis with immune blotting of fractionated blood cells (thrombocytes, mononuclear cells, granulocytes and erythrocytes) reveals the presence of a single protein crossreactive with calelectrin from Torpedo marmorata in the granulocyte and mononuclear cell fractions only. Human calelectrin has a molecular weight similar to Torpedo calelectrin (approximately 34-35 kD) and also binds to membranes in a Ca(2+)-dependent manner. Our results have several implications: (1) Calelectrin is conserved during evolution between the fish Torpedo marmorata and humans; (2) its expression in neural and mesenchymal cells points to an important functional role of the protein; (3) its absence from platelets excludes the hypothesis that it is a necessary participant in exocytosis per se and suggests some other function in Ca(2+)-triggered processes.  相似文献   

14.
The nature of the G-proteins present in the pre- and post-synaptic plasma membranes and in the synaptic vesicles of cholinergic nerve terminals purified from the Torpedo electric organ was investigated. In pre- and post-synaptic plasma membranes, Bordetella pertussis toxin, known to catalyze the ADP-ribosylation of the alpha-subunit of several G-proteins, labels two substrates at 41 and 39 kDa. The 39 kDa subunit detected by ADP-ribosylation in the synaptic plasma membrane fractions was immunologically similar to the Go alpha-subunit purified from calf brain. In contrast to bovine chromaffin cell granules, no G-protein could be detected in Torpedo synaptic vesicles either by ADP-ribosylation or by immunoblotting.  相似文献   

15.
《The Journal of cell biology》1983,97(6):1737-1744
The crude extract of venom glands of the polychaete annelid Glycera convoluta triggers a large Ca2+-dependent acetylcholine release from both frog motor nerve terminals and Torpedo electric organ synaptosomes. This extract was partially purified by Concanavalin A affinity chromatography. The biological activity was correlated in both preparations to a 300,000-dalton band, as shown by gel electrophoresis. This confirmed previous determinations obtained with chromatographic methods. This glycoprotein binds to presynaptic but not postsynaptic plasma membranes isolated from Torpedo electric organ. Pretreatment of intact synaptosomes by pronase abolished both the binding and the venom- induced acetylcholine release without impairing the high K+-induced acetylcholine release. Pretreatment of nerve terminal membranes by Concanavalin A similarly prevented the binding and the biological response. Binding to Torpedo membranes was still observed in the presence of EGTA. An antiserum directed to venom glycoproteins inhibited the neurotoxin so we could directly follow its binding to the presynaptic membrane. Glycera convoluta neurotoxin has to bind to a ectocellularly oriented protein of the presynaptic terminal to induce transmitter release.  相似文献   

16.
Phosphatidylinositol-specific phospholipase C (PIPLC) quantitatively solubilizes acetylcholinesterase (AChE) from purified synaptic plasma membranes and intact synaptosomes of Torpedo ocellata electric organ. The solubilized AChE migrates as a single peak of sedimentation coefficient 7.0S upon sucrose gradient centrifugation, corresponding to a subunit dimer. The catalytic subunit polypeptide of AChE is the only polypeptide detectably solubilized by PIPLC. This selective removal of AChE does not affect the amount of acetylcholine released from intact synaptosomes upon K+ depolarization. PIPLC also quantitatively solubilizes AChE from the surface of intact bovine and rat erythrocytes, but only partially solubilizes AChE from human and mouse erythrocytes. The AChE released from rat and human erythrocytes by PIPLC migrates as a approximately 7S species on sucrose gradients, corresponding to a catalytic subunit dimer. PIPLC does not solubilize particulate AChE from any of the brain regions examined of four mammalian species. Several other phospholipases tested, including a nonspecific phospholipase C from Clostridium welchii, fail to solubilize AChE from Torpedo synaptic plasma membranes, rat erythrocytes, or rat striatum.  相似文献   

17.
A protein that binds vesamicol has been purified from a soluble fraction of the Torpedo electric organ homogenate that does not contain synaptic vesicles. The purified vesamicol-binding protein (VBP) has a molecular mass of 470 kDa composed of 30- and 24-kDa subunits. Chemical deglycosylation yielded a single, heterogeneous protein of 24 kDa. The 30-kDa subunit is also sensitive to endo-beta-galactosidase. The dissociation constant of the VBP.vesamicol complex is 0.9 microM, and the Bmax is 5,500 pmol/mg. Antiserum raised to the 30-kDa subunit cross-reacts with the 24-kDa subunit, but not with synaptic vesicles. Drug binding studies and Western blot analysis show that VBP is present in other Torpedo tissues as well as mammalian brain. Immunofluorescence microscopy demonstrates that VBP-like immunoreactivity is not localized exclusively to the nerve terminal regions of the electric organ. Thermal stability, the pH dependence of vesamicol binding, and pharmacological comparisons demonstrate that the VBP is not the cholinergic synaptic vesicle receptor for vesamicol. The implications of this finding for current efforts to develop in vivo diagnostics of cholinergic nerve terminal status based on vesamicol are discussed.  相似文献   

18.
Chiara DC  Dangott LJ  Eckenhoff RG  Cohen JB 《Biochemistry》2003,42(46):13457-13467
To identify inhalational anesthetic binding domains in a ligand-gated ion channel, we photolabeled nicotinic acetylcholine receptor (nAChR)-rich membranes from Torpedo electric organ with [(14)C]halothane and determined by Edman degradation some of the photolabeled amino acids in nAChR subunit fragments isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography. Irradiation at 254 nm for 60 s in the presence of 1 mM [(14)C]halothane resulted in incorporation of approximately 0.5 mol of (14)C/mol of subunit, with photolabeling distributed within the nAChR extracellular and transmembrane domains, primarily at tyrosines. GammaTyr-111 in ACh binding site segment E was labeled, while alphaTyr-93 in segment A was not. Within the transmembrane domain, alphaTyr-213 within alphaM1 and deltaTyr-228 within deltaM1 were photolabeled, while no labeled amino acids were identified within the deltaM2 ion channel domain. Although the efficiency of photolabeling at the subunit level was unaffected by agonist, competitive antagonist, or isoflurane, state-dependent photolabeling was seen in a delta subunit fragment beginning at deltaPhe-206. Labeling of deltaTyr-212 in the extracellular domain was inhibited >90% by d-tubocurarine, whereas addition of either carbamylcholine or isoflurane had no effect. Within M1, the level of photolabeling of deltaTyr-228 with [(14)C]halothane was increased by carbamylcholine (90%) or d-tubocurarine (50%), but it was inhibited by isoflurane (40%). Within the structure of the nAChR transmembrane domain, deltaTyr-228 projects into an extracellular, water accessible pocket formed by amino acids from the deltaM1-deltaM3 alpha-helices. Halothane photolabeling of deltaTyr-228 provides initial evidence that halothane and isoflurane bind within this pocket with occupancy or access increased in the nAChR desensitized state compared to the closed channel state. Halothane binding at this site may contribute to the functional inhibition of nAChRs.  相似文献   

19.
T C Südhof  J H Walker    J Obrocki 《The EMBO journal》1982,1(10):1167-1170
Calelectrin is a protein that can be purified to homogeneity from the cholinergically innervated electric organ of Torpedo marmorata where it is present in large amounts. It has been shown to bind to the membranes of the electric organ in a Ca2+-dependent and specific manner. Using the purified protein we now report that it is specifically self-aggregated by Ca2+ in micromolar concentrations but not by Mg2+ at much higher concentrations. Sr2+ is also completely inactive, while Ba2+ and the trivalent lanthanides Tb3+, Eu3 +, and La3+ can substitute for Ca2+. Calelectrin also greatly enhances the Ca2+-induced aggregation of isolated synaptic vesicle membranes from the cholinergic nerve terminals of T. marmorata and of chromaffin granule membranes from the bovine adrenal medulla. The potentiation of membrane aggregation is mainly due to the appearance of a fast aggregatory phase in the presence of calelectrin . It is saturable with respect to calelectrin and can be demonstrated at very low calelectrin concentrations, suggesting a specific calelectrin membrane-binding component. This component seems to be of lipid nature since the aggregation of total extracted lipids from Torpedo electric organ and from chromaffin granules could also be enhanced by calelectrin . The Ca2+-induced self-association of calelectrin and its aggregation enhancing effect may be of great importance to the structural organization of neural and secretory cells and the mechanism of exocytosis.  相似文献   

20.
J Lindstrom  B Walter  B Einarson 《Biochemistry》1979,18(21):4470-4480
Polypeptide chains composing acetylcholine receptors from the electric organs of Torpedo californica and Electrophorus electricus were purified and labeled with 125I. Immunochemical studies with these labeled chains showed that receptor from Electrophorus is composed of three chains corresponding to the alpha, beta, and gamma chains of receptor from Torpedo but lacks a chain corresponding to the delta chain of Torpedo. Experiments suggest that receptor from mammalian muscle contains four groups of antigenic determinants corresponding to all four of the Torpedo chains. Binding of 125I-labeled chains was measured by quantitative immune precipitation and electrophoresis. Antisera to the following immunogens were used: denatured alpha, beta, gamma, and delta chains of Torpedo receptor, native receptor from Torpedo and Electrophorus electric organs and from rat and fetal calf muscle, and human muscle receptor (from autoantisera of patients with myasthenia gravis). The four chains of Torpedo receptor were immunologically distinct from one another and from higher molecular weight chains found in electric organ membranes. Antibodies to these chains reacted very efficiently with native Torpedo receptor, but the reverse was not true. Antibodies to native receptor from Torpedo and Electrophorus reacted slightly with each of the chains of the corresponding receptor. However, cross-reaction between chains and antibodies to any native receptor was most obviuos with the alpha chain of Torpedo or the corresponding alpha' chain of Electrophorus. Antiserum to alpha chains exhibited higher titer aginst receptor from denervated rat muscle. Antibodies from myasthenia gravis patients did not cross-react detectably with 125I-labeled chains from electric organ receptors. Most interspecies cross-reaction occurred at conformationally dependent determinants whose subunit localization could not be determined by reaction with the denatured chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号