首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+,K+-ATPase alpha-subunit was localized to the entire plasma membrane. Na+,K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+,K+-ATPase alpha-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+,K+-ATPase catalytic activity and contained a 96-kD alpha-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+,K+-ATPase activity and no alpha-subunit band could be detected in Western blots of these fractions. We conclude that Na+,K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.  相似文献   

2.
The Na+, K+-ATPase activity in the homogenate and in subcellular fractions of different parts of the brain of adult and old rats was studied in comparison. The content of cholesterol in the above fractions was also determined. In old age the Na+, K+-ATPase activity in the homogenate and microsomal fraction of the cerebral hemispheres' cortex decreases, while the Mg2+-ATPase activity in the cortex microsomal fraction increases. The age-related Na+, K+- and Mg2+-ATPase activity in the myelin of the stem in the synaptic plasma membranes of hemispheres and the brain stem remains unchanged whereas in the myelin fraction of hemispheres it grows. The content of cholesterol in the brain of old rats as compared with adult ones increases in the microsomal fraction and remains unchanged in synaptic membranes. The possible role of age-related modification of lipid component of plasma membranes in the above changes of Na+, K+-ATPase activity is discussed.  相似文献   

3.
The study of albino rats aged 6-7 months and 25-27 months revealed the age-related increase of maximal activity (V) of Na+, K+-ATPase of synaptosomal plasma membranes, separated from the cerebral cortex, while the level of Km remained stable. It is shown that in old rats as compared to the adult ones the affinity of Na+, K+-ATPase to sodium ions increases and the character of the ATP hydrolysis schedule changes in the presence of different ration of ions-activators. There are no significant changes in the inhibiting effect of strophantidin K on Na+, K+-ATPase activity of synaptosomal plasma membranes.  相似文献   

4.
The effect of large and small doses of rabbit antibodies specific to plasma membranes of the rat testicle cells has been studied in the experiments on Wistar rats of three age groups (preadolescent--aged 20 days, puberal--aged 5-7 months and old--aged 24-26 months). It is stated that incubation of plasma membranes by IgG fraction isolated from antimembrane testicular serum (IgG-ATCSm) in a large dose (43 g of protein G per 125 g of protein of membrane fraction) caused statistically reliable inhibition of Na+, K(+)-ATPase activity in the membranes of testicle cells of puberal and old rats. Preadolescent rats exhibit only a tendency to decrease the activity of this enzyme. Incubation of plasma membranes of testicle cells in rats of different age by small doses of IgG-ATCSm (0.43 g of protein G per 125 g of membrane protein) induced a statistically reliable increase of Na+, K(+)-ATPase activity in puberal and old animals and its slight increase in preadolescent rats. The IgG fraction isolated from normal rabbit serum (IgG-NRS) exerted a less pronounced effect on Na+, K(+)-ATPase activity parallel with retention of a tendency to a decrease of activity under the influence of large doses of the drug and to an increase with introduction of small doses.  相似文献   

5.
The (Na+,K+) ATPase in plasma membranes isolated from rat adipocytes is insensitive to insulin (Lytton J., Lin, J.C., and Guidotti, G. (1985) J. Biol. Chem. 260, 1177-1184). For this reason, the characteristics of the (Na+,K+) pump in adipocyte ghosts, prepared by hypotonic lysis of adipocytes (Rodbell, M. (1967) J. Biol. Chem. 242, 5744-5750), were studied. Herein it is demonstrated that the (Na+,K+) pump in ghosts is identical to that described in isolated plasma membranes, sharing the following characteristics: 1) the Ki values for ouabain are 1.3 x 10(-7) M and 4.5 x 10(-5) M for the alpha 2 and alpha 1 isozymes, respectively; 2) the K0.5 values for sodium are 11.4 +/- 1.6 and 7.2 +/- 3.8 mM for the alpha 2 and alpha 1 isozymes, respectively; 3) both forms of the (Na+,K+) pump are insensitive to insulin stimulation, presumably because the activities are already maximal. The ghosts are not in an insulin-stimulated state because the activity of the glucose transporter is not increased as it is in ghosts prepared from insulin-treated cells. In addition, presented evidence demonstrates that ghost internal sodium concentration, [Na+]i, is very sensitive to changes in the activity of the (Na+,K+) pump. If the [Na+]i, of adipocytes is also very sensitive to the activity of the (Na+,K+) pump, the mechanism of insulin stimulation of the adipocyte (Na+,K+) pump requires reexamination.  相似文献   

6.
This study was designed to establish the properties of liver plasma membranes (LPM) Na+,K+-ATPase in the hamster and to determine whether a similar assay may be used to measure enzyme activity in the hamster and in the rat. Maximal Na+,K+-ATPase activity was obtained when the assay medium contained 5 mM Mg APT2- with or without 1 mM free Mg2+, 120 mM Na+, 12,5 mM K+. The incubation must be performed at 37 degrees C, pH 7.4. In the absence of free Mg2+, the saturation curve with respect to the substrate Mg ATP2- resulted in biphasic complex kinetics with a maximal activity at a substrate concentration of 5 mM. In the presence of 1 mM free Mg2+ activation of Na+,K+-ATPase and modification of the kinetics were observed: the biphasic curve tended to disappear and to become of the Michaelis-Menten type. The apparent Km for Mg APT2- was 0.36 mM and the Vmax 34.5 mumol.h-1.mg protein-1. In the presence of 10 mM free Mg2+ a decrease in the Vmax was observed without any effect on the apparent Km for Mg APT2-. It is concluded that the same incubation medium may be used to assay LPM N+,K+-ATPase from hamster and rat and that the addition of 1 mM free Mg2+ to the incubation medium is recommended to obtain Michaelis-Menten kinetics in order to eliminate complex kinetics due to the absence of free Mg2+.  相似文献   

7.
Distribution of (Na+,K+)ATPase on the cell membranes of acinar and duct cells of rat parotid gland was investigated quantitatively by immunoelectron microscopy using the post-embedding protein A-gold technique. In acinar cells, ATPase was localized predominantly on the basolateral plasma membranes. A small but significant amount of (Na+,K+)ATPase was, however, detected on the luminal plasma membranes, especially on the microvillar region of the acinar cells; the surface density on the luminal membrane was approximately one third of that on the basolateral membranes. In duct cells, many gold particles were found on the basolateral membrane, especially along the basal infoldings of the plasma membranes, whereas no significant gold particles were found on the luminal plasma membranes, suggesting unilateral distribution of ATPase in duct cells. We suggest that in acinar cells sodium ion is not only transported paracellularly but is also actively transported intracellularly into the luminal space by the (Na+,K+)ATPase located on the luminal plasma membranes, and that water is passively transported to the luminal space to form a plasma-like isotonic primary saliva, while in the duct cells the same ion is selectively re-absorbed intracellularly by (Na+,K+)ATPase found in abundance along the many infoldings of the basal plasma membranes, thus producing the hypotonic saliva.  相似文献   

8.
ATPase activity was localized by means of Wachstein-Meisel's method in rat sciatic nerve fibers. Using controls with ouabain, the presence of alpha + (neuronal) Na+, K+-ATPase was examined. The enzyme occurs in the ATPase reaction of the myelin-forming membranes, axoplasm and Schwann cell cytoplasm. Its presence in the Schwann cell plasma membrane is only admittable. The ATPase activity of the compact myelin and axolemma was exclusively of alpha + type of Na+, K+-ATPase.  相似文献   

9.
The distribution of thiamine-binding and thiamine triphosphatase activity typical of thiamine-binding proteins was studied in intracellular structures of rats liver and kidneys. It was found that the fraction of microsomes has the highest rate of specific thiamine-binding activity amide fractions of subcellular structures that was isolated using differential centrifugation in the both organs. Hydrolysis of thiamine triphosphate (pH 7.4) was also extremely active in these structures. The results of our research allow to make a conclusion that subcellular structures precipitated as fraction of microsomes (endoplasmic reticulum and vesicled parts of plasma membranes) are the sites of the most probable localisation of thiamine-binding proteins of liver and kidneys.  相似文献   

10.
The subcellular distribution of neutral sphingomyelinase activity has been determined in rat liver. Neutral sphingomyelinase is present in the plasma membrane. This enzyme requires either Mg2+ or Mn2+ for full activity; these cations cannot be replaced by Co2+ or Ca2+. The plasma membrane sphingomyelinase is strongly inhibited by Hg2+. A small amount of neutral spingomyelinase activity appears to be present in microsomes. No neutral sphingomyelinase activity is present in liver mitochondria or bytosol. Lysosomal sphingomyelinase is fully active at pH 4.4--4.8 without added divalent cations. However, between pH 5.0 and 7.5 lysosomal sphingomyelinase activity is stimulated by Mg2+, Mn2+, Co2+, and Ca2+. Below pH 4.8, Mg2+ inhibits the reaction. In contrast to the results obtained with the neutral sphingomyelinase activity of plasma membranes and microsomes, lysosomal sphingomyelinase is unaffected by sulfhydryl inhibitors.  相似文献   

11.
Two molecular forms of the (Na+,K+)-ATPase catalytic subunit have been identified in rat adipocyte plasma membranes using immunological techniques. The similarity between these two forms and those in brain (Sweadner, K. J. (1979) J. Biol. Chem. 254, 6060-6067) led us to use the same nomenclature: alpha and alpha(+). The K0.5 values of each form for ouabain (determined by inhibition of phosphorylation of the enzyme from [gamma-32P]ATP) were 3 X 10(-7)M for alpha(+) and 1 X 10(-5)M for alpha. These numbers correlate well with the K0.5 values for the two ouabain-inhibitable components of 86Rb+/K+ pumping in intact cells (1 X 10(-7) M and 4 X 10(-5)M). Quantitation of the Na+ pumps in plasma membranes demonstrated a total of 11.5 +/- 0.2 pmol/mg of membrane protein, of which 8.5 +/- 0.3 pmol/mg, or 75%, was alpha(+). Insulin stimulation of 86Rb+/K+ uptake in rat adipocytes was abolished by ouabain at a concentration sufficient to inhibit only alpha(+)(2-5 X 10(-6)M). Immunological techniques and ouabain inhibition of catalytic labeling of the enzyme from [gamma-32P]ATP demonstrated that alpha(+) was present in skeletal muscle membranes as well as in adipocyte membranes, but was absent from liver membranes. Since insulin stimulates increased Na+ pump activity in adipose and muscle tissue but not in liver, there is a correlation between hormonal regulation of (Na+,K+)-ATPase and the presence of alpha(+). We propose that alpha(+) is the hormonally-sensitive version of the enzyme.  相似文献   

12.
We have previously demonstrated that Na+, K(+)-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the alpha subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of alpha isoforms (alpha1 and alpha2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K(+)-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0+/-0.1 microM) than the activity of innervated membranes (I50=2.6+/-0.2 microM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K(+)-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of alpha1 and alpha2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K(+)-ATPase alpha-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

13.
The addition of nanomolar concentrations of free Fe2+, Mn2+, or Co2+ to rat liver plasma membranes resulted in an activation of ATP hydrolysis by these membranes which was not additive with the Ca2+-stimulated ATPase activity coupled to the Ca2+ pump. Detailed analysis showed that, if fact, (i) as for the stimulation of (Ca2+-Mg2+)-ATPase by Ca2+, activation of ATP hydrolysis by Fe2+, Mn3+, or Co2+ followed a cooperative mechanism involving two ions; (ii) two interacting sites for ATP were involved in the activation of both Fe2+- and Ca2+-stimulated ATPase activities; (iii) micromolar concentrations of magnesium caused the same dramatic inhibition of both activities; and (iv) the subcellular distribution of Fe2+-activated ATP hydrolysis activity corresponded to that of plasma membrane markers. This suggests that the (Ca2+-Mg2+)-ATPase might be stimulated not only by Ca2+, but also by Fe2+, Mn2+, or Co2+. However, interaction of (Ca2+-Mg2+)-ATPase with Fe2+, Mn2+, or Co2+ inhibited the Ca2+ pump activity. Furthermore, neither the formation of the phosphorylated intermediate of (Ca2+-Mg2+)-ATPase, nor ATP-dependent (59Fe) uptake could be detected in the presence of Fe2+ concentrations which stimulated ATP hydrolysis. We conclude that: (i) under the influence of certain metal ions, the Ca2+ pump in the liver plasma membrane may be switched to an uncoupled state which displays ATP hydrolysis activity, but does not insure ion transport; (ii) therefore the Ca2+ pump in liver plasma membranes specifically insures Ca2+ transport.  相似文献   

14.
Inactivation of Na+, K+ -ATPase from cattle brain by sodium fluoride   总被引:3,自引:0,他引:3  
The influence of the physiological ligands and modifiers on the plasma membrane Na+, K+ -ATPase from calf brain inactivation by sodium fluoride (NaF) is studied. ATP-hydrolyzing activity of the enzyme was found to be more stable as to NaF inhibition than its K+ -pNPPase activity. The activatory ions of Na+, K+ -ATPase have different effects on the process of the enzyme inhibition by NaF. K+ intensifies inhibition, but Na+ does not affect it. An increase of [Mg2+free] in the incubation medium (from 0.5 to 3.0 mM) rises the sensitivity of Na+, K+ -ATPase to NaF inhibition. But an increase of [ATP] from 0.3 to 1.5 mM has no effect on this process. Ca and Mg ions modify Na+, K+ -ATPase inhibition by fluoride differently. Ca2+free levels this process, and Mg2+free on the contrary increases it. In the presence of Ca ions and in the neutral-alkaline medium (pH 7.0-8.5) the recovery of activity of the transport ATPase inhibited by-NaF takes place. Sodium citrate also protects both ATP-hydrolizing and K-pNPPase activity of the Na+, K+ -ATPase from NaF inhibition. Under the modifing membranous effects (the treatment of plasma membranes by Ds-Na and digitonin) the partial loss of Na+, K+ -ATPase sensitivity to NaF inhibition is observed. It is concluded that Na+, K+ -ATPase inactivation by NaF depends on the influence of the physiological ligands and modifiers as well as on the integrity of membrane structure.  相似文献   

15.
The effect of ionizing radiation of lethal (0.31 C/kg) and superlethal (9.288 C/kg) doses on Mg2+, Ca2+-ATPase activity in plasma membranes of brain cortex and cerebellum has been studied. As is shown, ionizing radiation has an inhibitory effect on the enzyme activity which is most pronounced and irreversible after exposure to superlethal doses.  相似文献   

16.
Using preparations of synaptosomes and subsynaptosomal fractions from the rat brain, we studied the localization of thiamine-binding protein (TBP) in the subcellular structures of the neurons. In addition, we studied the distribution in synaptosomes of two types of activity typical of TBP (thiamine triphosphatase and thiamine-binding activities), as well as the effects of factors destroying the plasma membrane of synaptosomes on binding of [14C]thiamine with the latter. We found that the thiamine-associated activity of TBP was the highest in fractions of the synaptic vesicles and plasma membranes. Hydrolysis of thiamine triphosphate was also most active in these structures. Our results allow us to conclude that TBP is localized mostly in the synaptic vesicles and plasma membranes of synaptosomes.  相似文献   

17.
Thiamine pyrophosphate-ATP phosphoryltransferase, the enzyme that catalyzes the synthesis of thiamine triphosphate, has been found in the supernatant fraction of rat liver. The substrate for the enzyme is endogenous, bound thiamine pyrophosphate, since the addition of exogenous thiamine pyrophosphate had no effect. Thus, when a rat liver supernatant was incubated with gamma-labelled [32P]ATP, thiamine [32P]triphosphate was formed whereas the incubation of thiamine [32P]pyrophosphate with ATP did not produce thiamine [32P]triphosphate. The endogenous thiamine pyrophosphate was found to be bound to a high molecular weight protein which comes out in the void volume of Sephadex G-75, and is not dialyzable. The activity that catalyzes the formation of thiamine triphosphate has an optimum pH between 6 and 6.5, a linear time course of thiamine triphosphate synthesis up to 30 min, and is not affected by Ca2+, cyclic GMP and sulfhydryl reagents.  相似文献   

18.
The preparation of the purified Ca2+, Mg2(+)-ATPase has been isolated from triton X-100 solubilizate of plasma membranes of the pig myometrium using the method of affinity chromatography on calmodulin-Sepharose 4B. The specific activity of the enzyme shows its 52-fold purification. The enzymic preparation practically has no Mg2(+)-ATPase activity. By the data of DS-Na-electrophoresis in PAAG the Ca2+, Mg2+ ATPase preparation consists of two polypeptides with Mm 130 and 205 kDa. Autoradiography shows their Ca2(+)-dependent phosphorylation. The purified enzyme is highly sensitive to the inhibitory effect of orthovanadate.  相似文献   

19.
Rat liver plasma membranes contain (Ca2+-Mg2+)-ATPase sensitive to inhibition by both glucagon and Mg2+. We have previously shown that Mg2+ inhibition is mediated by a 30,000-dalton inhibitor, originally identified as a membrane-bound protein. In fact, this inhibitor is also present in the 100,000 X g supernatant of the total liver homogenate. Its purification was achieved from this fraction by a combination of ammonium sulfate washing, gel filtration, and cationic exchange chromatography. N-Ethylmaleimide (NEM) treatment caused the inactivation of the purified inhibitor, which suggested that this protein possesses at least one NEM-sensitive sulfhydryl group essential for its activity. Treatment of the liver plasma membranes with NEM resulted in a 2- and 5-fold decrease in the affinity of the (Ca2+-Mg2+)-ATPase for glucagon and Mg2+, respectively, while the basal enzyme activity remained unchanged. This effect of NEM was concentration-, pH-, and time-dependent, optimal conditions being obtained by a 60-min treatment of plasma membranes with 50 mM NEM, at pH 7 and at 4 degrees C. The presence of 0.5 mM Mg2+ during NEM treatment of the plasma membranes prevented NEM inactivation. Reconstitution experiments showed that addition of the purified inhibitor to NEM-treated plasma membranes restored the inhibitions of the (Ca2+-Mg2+)-ATPase by both magnesium and glucagon. It is proposed that the (Ca2+-Mg2+)-ATPase inhibitor not only confers its sensitivity of the liver (Ca2+-Mg2+)-ATPase to Mg2+, but also mediates the inhibition of this system by glucagon.  相似文献   

20.
Fluoroaluminate, known modulator of G-proteins, inhibits ATP-hydrolase activity of purified solubilized Ca2+, Mg(2+)-ATPase from myometrium cell plasma membranes and Ca(2+)-transporting activity of this enzyme reconstituted into azolectin liposomes: 10 mM NaF plus 10 microM AlCl3 inhibited the primary activity by 95% and--by 81%. Inhibition of purified both solubilized and reconstituted Ca2+, Mg(2+)-ATPases by fluoroaluminate evidences for the possibility of direct interaction AlF4- with this enzyme without involvement of G-protein. The sensitivity to fluoroaluminate of sarcolemmal Ca2+, Mg(2+)-ATPase from myometrium is similar to that of Ca2+, Mg(2+)-ATPase from stomach smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号