首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The biochemical action of the Notch locus whose mutants cause morphological aberrations in flies, viz., notches of wings and bristle multiplication, has been analyzed (1) by the addition to the food medium of enzyme inhibitors causing phenocopies of Notch and (2) by comparison of enzyme activity patterns of Notch mutants with different degrees of phenotypic expression. Notch phenocopies were induced by inhibitors of enzyme activities in two biochemical pathways: (1) the de novo pyrimidine synthesis by 5-methylorotate (inhibitor of dihydroorotate dehydrogenase) and (2) the choline shunt by amobarbital (inhibits choline dehydrogenase) and methoxyacetate (inhibits sarcosine dehydrogenase). The inhibition of de novo pyrimidine synthesis prevents the production of deoxyuridine-5-phosphate, the substrate for the synthesis of thymidine-5-phosphate via thymidylate synthase, whereas the inhibition of the choline shunt prevents the production of HCHO groups and glycine, both of which are involved in the synthesis of 5,10-methylenetetrahydrofolate, which is a cofactor of thymidylate synthase. It was already known that the inhibition of the latter enzyme in vivo induces Notch phenocopies. Notch mutants with a strong morphological expression show low enzyme activities for dihydroorotate dehydrogenase and choline dehydrogenase. Both are flavoprotein enzymes linked to the respiratory chain. The correspondence between the low enzyme activities in Notch mutants with a strong morphological expression and the phenocopying effect of antimetabolites on these enzymes in the two biochemical pathways involved strongly suggests that the morphological effects of Notch on flies are a consequence of lowered activities of choline dehydrogenase and dihydroorotate dehydrogenase.  相似文献   

3.
A locus is described that controls levels of mitochondrial dihydroorotate dehydrogenase (EC 1.3.3.1) in Drosophila melanogaster. The effects of alleles of the locus, Dhod, are manifest in preparations from whole organisms as well as in partially purified mitochondrial preparations; however, other mitochondrial functions do not appear to be appreciably affected by Dhod genotypes. The locus maps near p in the proximal portion of the right arm of chromosome 3. Flies trisomic for a chromosome segment including that region display elevated enzyme levels, implying that an enzyme structural gene is in that vicinity. Furthermore, Dhod alleles are semidominant in heterozygotes, suggesting that the dosage-sensitive element detected in the trisomics is actually the Dhod locus. These findings are discussed relative to the role of dihydroorotate dehydrogenase in the de novo pyrimidine biosynthetic pathway and relative to other pathway mutants that have been described in Drosophila.This work was supported by NSF Grants PCM 76-17214 to W. Cohen and PCM 78-14164 To J. Rawls, as well as NIH Research Career Development Award 1 KO4 AM00676 to J. Rawls.  相似文献   

4.
二氢乳清酸脱氢酶是黄素依赖的线粒体酶,它催化嘧啶从头合成的第4步反应,将二氢乳清酸氧化为乳清酸。通过选择性抑制二氢乳清酸脱氢酶,从而抑制嘧啶的合成,已被开发用于治疗癌症、自身免疫性疾病、细菌或病毒感染以及寄生虫疾病等。抑制剂的开发需详细了解二氢乳清酸脱氢酶的结构特征和催化循环机制。因此,文中主要从这两个方面进行了综述,并展望了该酶的抑制剂在临床应用中的前景。  相似文献   

5.
An in-frame deletion in the coding region of a gene of previously unidentified function (which is called orf2 and which we propose to rename pyrDII) in the Bacillus subtilis pyr operon led to pyrimidine bradytrophy, markedly reduced dihydroorotate dehydrogenase activity, and derepressed levels of other enzymes of pyrimidine biosynthesis. The deletion mutation was not corrected by a plasmid encoding pyrDI, the previously identified gene encoding dihydroorotate dehydrogenase, but was complemented by a plasmid encoding pyrDII. We propose that pyrDII encodes a protein subunit of dihydroorotate dehydrogenase that catalyzes electron transfer from the pyrDI-encoded subunit to components of the electron transport chain.  相似文献   

6.
7.
Two different dihydroorotate dehydrogenases in Lactococcus lactis.   总被引:7,自引:4,他引:3       下载免费PDF全文
The pyrimidine de novo biosynthesis pathway has been characterized for a number of organisms. The general pathway consists of six enzymatic steps. In the characterization of the pyrimidine pathway of Lactococcus lactis, two different pyrD genes encoding dihydroorotate dehydrogenase were isolated. The nucleotide sequences of the two genes, pyrDa and pyrDb, have been determined. One of the deduced amino acid sequences has a high degree of homology to the Saccharomyces cerevisiae dihydroorotate dehydrogenase, and the other resembles the dihydroorotate dehydrogenase from Bacillus subtilis. It is possible to distinguish between the two enzymes in crude extracts by using different electron acceptors. We constructed mutants containing a mutated form of either one or the other or both of the pyrD genes. Only the double mutant is pyrimidine auxotrophic.  相似文献   

8.
9.
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.  相似文献   

10.
为了进一步探讨植物MAPKs(mitogen-activated protein kinases)在植物防卫中的作用,该研究从不结球白菜抗病品种‘苏州青’中克隆到一个抗核盘菌(Sclerotinia sclerotiorum)相关基因,命名为BcMPK4(DDBJ登录号AB557751)。该基因核苷酸序列全长1 334bp,编码373个氨基酸,与已克隆的MPK4基因有不同程度的相似性。系统进化树分析表明,该基因在不同物种之间具有保守性。基因组DNA杂交表明,BcMPK4可能属于一个较小的多基因家族,属组成型表达。实时定量PCR检测表明,核盘菌能够诱导不结球白菜BcMPK4基因的转录表达;BcMPK4基因在不结球白菜叶片中的表达特征说明它可能参与寄主对核盘菌的抗性。  相似文献   

11.
12.
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3 end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3 untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked.  相似文献   

13.
14.
Control of pyrimidine biosynthesis was examined in Pseudomonas mucidolens ATCC 4685 and the five de novo pyrimidine biosynthetic enzyme activities unique to this pathway were influenced by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. When uracil was supplemented to glucose-grown ATCC 4685 cells, activities of four de novo enzymes were depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the glucose-grown mutant strain cells, pyrimidine limitation of this strain caused aspartate transcarbamoylase, dihydroorotase and dihydroorotate dehydrogenase activities to increase by more than 3-fold while OMP decarboxylase activity increased by 2.7-fold. The syntheses of the de novo enzymes appeared to be regulated by pyrimidines. At the level of enzyme activity, aspartate transcarbamoylase activity in P. mucidolens ATCC 4685 was subject to inhibition at saturating substrate concentrations. Transcarbamoylase activity was strongly inhibited by UTP, ADP, ATP, GTP and pyrophosphate.  相似文献   

15.
16.
17.
To follow the expression of the fourth enzyme of pyrimidine de novo synthesis dihydroorotate dehydrogenase (DHODH) in cells and tissues, we studied the DHODH mRNA expression by means of RT-PCR in rat tissues. Rabbit polyclonal anti-DHODH immunoglobulins were applied for immunochemical quantification of the enzyme protein by Western blotting. In mouse B-lymphocytes, which were adapted to tolerate up to a 50-fold concentration of the DHODH inhibitor leflunomide, a 20 fold protein overexpression was measured. Southern blotting indicated DHODH gene amplification.  相似文献   

18.
Alcohol dehydrogenase of Drosophila melanogaster catalyzes the oxidation of many primary and secondary alcohols. We show that sarcosine, choline and dihydroorotate are substrates of ADH in vitro. The first two substrates are regular substrates of the choline shunt, and the latter of the de novo pyrimidine synthesis. Differences in oxidative ability towards sarcosine and dihydroorotate between two ADH allozymes, ADH71k and ADHF, are observed. The catalytic activity of ADH71k towards sarcosine and dihydroorotate might be responsible for its allelic fixation in Notch8 mutant stocks, in which Notch females have a decreased level of the regular enzymes for these substrates. Their oxidation by ADH71k might act as a bypass, which restores at least part of the decreased activity of enzymes encoded by the Notch locus.  相似文献   

19.
Mammalian dihydroorotate dehydrogenase, the fourth enzyme of pyrimidine de novo synthesis is an integral protein of the inner mitochondrial membrane that faces the intermembrane space and is functionally connected to the respiratory chain via ubiquinone. Here, we describe the first cloning and analyzing of the complete cDNA of mouse dihydroorotate dehydrogenase. Based on our recent functional expression of the full-length rat and human dihydroorotate dehydrogenase, here we expressed N-terminal-truncated C-terminal-histidine-tagged constructs of the mouse, rat and human enzymes in Escherichia coli. These proteins were devoid of the N-terminal bipartite sequence consisting of the mitochondrial targeting sequence and adjacent hydrophobic domain necessary for import and proper location and fixation of the enzyme in the inner mitochondrial membrane. By employing metal-chelate affinity chromatography under native conditions, the enzymes were purified without detergents to a specific activity of more than 100 micromol x min(-1) x mg(-1) at pH optimum of 8.0--8.1. Flavin analyses by UV-visible spectrometry of the native enzymes gave fairly stoichiometric ratios of 0.6--1.2 mol flavin per mol protein. The kinetic constants of the truncated rat enzyme (K(m) = 11 microM dihydroorotate; K(m) = 7 microM ubiquinone) and human enzyme (K(m) = 10 microM dihydroorotate; K(m) = 14 microM ubiquinone) were very close to those recently reported for the full-size enzymes. The constants for the mouse enzyme, K(m) = 26 microM dihydroorotate and K(m) = 62 microM ubiquinone, were slightly elevated in comparison to those of the other species. The three truncated enzymes were tested for their efficacy with five inhibitors of topical clinical relevance against autoimmune disorders and tumors. Whereas the presence of the N-terminus of dihydroorotate dehydrogenase was essentially irrelevant for the efficacy of the malononitrilamides A77-1726, MNA715 and MNA279 with the rat and human enzyme, the N-termini were found to be important for the efficacy of the dianisidine derivative redoxal. Moreover, the complete N-terminal part of the human enzyme seemed to be of crucial importance for the 'slow-binding' features of the cinchoninic acid derivative brequinar, which was suggested to be one of the reasons for the narrow therapeutic window reported from clinical trials on its anti-proliferative and immunosuppressive action.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号