首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two-component systems, consisting of proteins with histidine kinase and/or response regulator domains, regulate environmental responses in bacteria, Archaea, fungi, slime molds, and plants. Here, we characterize RRG-1, a response regulator protein from the filamentous fungus Neurospora crassa. The cell lysis phenotype of Δrrg-1 mutants is reminiscent of osmotic-sensitive (os) mutants, including nik-1/os-1 (a histidine kinase) and strains defective in components of a mitogen-activated protein kinase (MAPK) pathway: os-4 (MAPK kinase kinase), os-5 (MAPK kinase), and os-2 (MAPK). Similar to os mutants, Δrrg-1 strains are sensitive to hyperosmotic conditions, and they are resistant to the fungicides fludioxonil and iprodione. Like os-5, os-4, and os-2 mutants, but in contrast to nik-1/os-1 strains, Δrrg-1 mutants do not produce female reproductive structures (protoperithecia) when nitrogen starved. OS-2-phosphate levels are elevated in wild-type cells exposed to NaCl or fludioxonil, but they are nearly undetectable in Δrrg-1 strains. OS-2-phosphate levels are also low in Δrrg-1, os-2, and os-4 mutants under nitrogen starvation. Analysis of the rrg-1D921N allele, mutated in the predicted phosphorylation site, provides support for phosphorylation-dependent and -independent functions for RRG-1. The data indicate that RRG-1 controls vegetative cell integrity, hyperosmotic sensitivity, fungicide resistance, and protoperithecial development through regulation of the OS-4/OS-5/OS-2 MAPK pathway.  相似文献   

2.
A gene for a putative two-component histidine kinase, which is homologous to os-1 from Neurospora crassa, was cloned and sequenced from the plant-pathogenic fungus Cochliobolus heterostrophus. The predicted protein possessed the conserved histidine kinase domain, the response regulator domain, and six tandem repeats of 92-amino-acids at the N-terminal end that are found in histidine kinases from other filamentous fungi. Introduction of the histidine kinase gene complemented the deficiency of the C. heterostrophus dic1 mutant, suggesting that the Dic1 gene product is a histidine kinase. Dic1 mutants are resistant to dicarboximide and phenylpyrrole fungicides, and they are sensitive to osmotic stress. We previously classified dic1 alleles into three types, based on their phenotypes. To explain the phenotypic differences among the dic1 mutant alleles, we cloned and sequenced the mutant dic1 genes and compared their sequences with that of the wild-type strain. Null mutants for Dic1, and mutants with a deletion or point mutation in the N-terminal repeat region, were highly sensitive to osmotic stress and highly resistant to both fungicides. A single amino acid change within the kinase domain or the regulator domain altered the sensitivity to osmotic stress and conferred moderate resistance to the fungicides. These results suggest that this predicted protein, especially its repeat region, has an important function in osmotic adaptation and fungicide resistance.Communicated by C. A. M. J. J. van den Hondel  相似文献   

3.
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.  相似文献   

4.
We cloned and characterized Neurospora NcSSK22 and NcPBS2 genes, similar to yeast SSK22 mitogen-activated protein (MAP) kinase kinase kinase and the PBS2 MAP kinase kinase genes, respectively. Disruptants of the NcSSK22 gene were sensitive to osmotic stress and resistant to iprodione and fludioxonil. Their phenotypes were similar to those of osmotic-sensitive (os) mutants os-1, os-2, os-4, and os-5. The os-4 mutant strain transformed with the wild-type NcSSK22 gene grew on a medium containing 4% NaCl and was sensitive to iprodione and fludioxonil. In contrast, the NcPBS2 gene complemented the osmotic sensitivity and fungicide resistance of the os-5 mutant strain. We sequenced the NcPBS2 gene of the os-5 mutant strain (NM216o) and found five nucleotides deleted within the kinase domain. This result suggests that the gene products of os-4 and os-5 are components of the MAP kinase cascade, which is probably regulated upstream by two-component histidine kinase encoded by the os-1/nik1 gene.  相似文献   

5.
In Neurospora crassa, multinucleate macroconidia are used for genetic transformation. The barrier for such a transformation can be either at the cell membrane level or at the nuclear membrane level. For assessment of these possibilities, a forced heterokaryon (containing two genetically marked nuclei and auxotrophic for histidine) of Neurospora crassa was transformed with a plasmid containing his-3 + gene. The transformants, which could grow without histidine supplementation, were then resolved into component homokaryons to determine into which nucleus or nuclei the plasmid had entered. Our results suggest that the barrier for transformation in Neurospora crassa is at the nuclear level, not at the cell membrane level. In a heterokaryon containing two genetically distinct nuclei, plasmid DNA integrated into only one of the nuclear types at any instance, but never into both nuclear types. Thus, in Neurospora crassa, the competent nucleus is essential for the transformation event to take place, and at a given time only one type of nucleus is competent to take up the exogenous DNA. Genomic Southern analysis showed that the transformants harbor both ectopic and homologous integrations of the plasmid DNA. The type and number of integrations were reflected at the post-translational level, since the specific activity of histidinol dehydrogenase (the translation product of his-3 + gene) was variable among several transformants and always less than the level of the wild type. Received: 24 July 2001 / Accepted: 15 August 2001  相似文献   

6.
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.  相似文献   

7.
A two-component histidine protein kinase gene, homologous to os-1 from Neurospora crassa, was cloned and sequenced from a single ascospore isolate of Botryotinia fuckeliana. A series of nine spontaneous mutants resistant to dicarboximide fungicides was selected from this strain and characterized with respect to fungicide resistance and osmotic sensitivity. Genetic crosses of the mutants with an authentic Daf1 strain showed that the phenotypes mapped to this locus. Single point mutations (seven transitions, one transversion, and one short deletion) were detected in the alleles of the nine mutants sequenced. The mutational changes were shown to cosegregate with the dicarboximide resistance and osmotic sensitivity phenotypes in progeny obtained from crossing selected resistant strains with a sensitive strain. All mutations detected are predicted to result in amino acid changes in the coiled-coil region of the putative Daf1 histidine kinase, and it is proposed that dicarboximide fungicides target this domain.  相似文献   

8.
Heterokaryons ofNeurospora crassa were generated by transformation of multinucleate conidia of ahistidine-3 auxotroph withhis-3 + plasmid. In one of the transformants, propagated on a medium with histidine supplementation, a gradual but drastic reduction occurred in the proportion of prototrophic nuclei that contained an ectopically integratedhis-3 + allele. This response was specific to histidine. The reduction in prototrophic nuclei was confirmed by several criteria: inoculum size test, hyphal tip analysis, genomic Southern analysis, and by visual change in colour of the transformant incorporating genetic colour markers. Construction and analyses of three-component heterokaryons revealed that the change in nuclear ratio resulted from interaction of auxotrophic nucleus with prototrophic nucleus that contained an ectopically integratedhis-3 + gene, but not with prototrophic nucleus that containedhis-3 + gene at the normal chromosomal location. The growth rate of heterokaryons and the activity of histidinol dehydrogenase—the protein encoded by thehis-3 + gene-remained unchanged despite prototrophic nuclei becoming very scarce. The results suggest that not all nuclei in the coenocytic fungal mycelium may be active simultaneously, the rare active nuclei being sufficient to confer the wild-type phenotype.  相似文献   

9.
The chemical mutagen ethylmethanesulphonate (EMS) has been used to generate mutants of Erwinia carotovora subspecies carotovora which are defective in the secretion of pectinases (Pel) and cellulases (Cel) but unaltered for protease (Prt) secretion. Such mutants, called Out? still synthesize Pel and Cel but these enzymes accumulate within the periplasm. Cosmid clones carrying wild-type E. carotovra ssp. carotovora DNA, identified by their ability to restore the Out+ phenotype when transferred to some Out? mutants, were classified into six complementation groups using cosmids and cosmid derivatives. Analysis of the nucleotide sequence of a 12.7 kb DNA fragment, encompassing complementing cosmid inserts, revealed a coding capacity for 13 potential open reading frames (ORFs), and these were designated outC-outO. Some of the out gene products were visualized using a T7 gene 10 expression system. The predicted Out proteins are highly similar to components of extracellular enzyme secretion systems from a diverse range of eubacteria including Erwinia chrysanthemi, Klebsiella oxytoca, Aeromonas hydrophila, Pseudomonas aeruginosa and Xanthomonas campestris. Lower levels of similarity exist between Ecc Out proteins and components of macromolecular trafficking systems from Bacillus subtilis, Haemophilus influenzae, Agrobacterium tumefaciens, Yersinia pestis and a protein involved in the morphogenesis of filamentous bacteriophages such as M13.  相似文献   

10.
Summary A T7 amber mutant, UP-2, in the gene for T7 DNA-binding protein was isolated from mutants that could not grow on sup + ssb-1 bacteria but could grow on glnU ssb-1 and sup + ssb +bacteria. The mutant phage synthesized a smaller amber polypeptide (28,000 daltons) than T7 wild-type DNA-dinding protein (32,000 daltons). DNA synthesis of the UP-2 mutant in sup + ssb-1 cells was severely inhibited and the first round of replication was found to be repressed. The abilities for genetic recombination and DNA repair were also low even in permissive hosts compared with those of wild-type phage. Moreover, recombination intermediate T7 DNA molecules were not formed in UP-2 infected nonpermissive cells. The gene that codes for DNA-binding protein is referred to as gene 2.5 since the mutation was mapped between gene 2 and gene 3.  相似文献   

11.
12.
Fungi normally maintain a high internal hydrostatic pressure (turgor) of about 500 kPa. In response to hyperosmotic shock, there are immediate electrical changes: a transient depolarization (1 to 2 min) followed by a sustained hyperpolarization (5 to 10 min) prior to turgor recovery (10 to 60 min). Using ion-selective vibrating probes, we established that the transient depolarization is due to Ca2+ influx and the sustained hyperpolarization is due to H+ efflux by activation of the plasma membrane H+-ATPase. Protein synthesis is not required for H+-ATPase activation. Net K+ and Cl uptake occurs at the same time as turgor recovery. The magnitude of the ion uptake is more than sufficient to account for the osmotic gradients required for turgor to return to its original level. Two osmotic mutants, os-1 and os-2, homologs of a two-component histidine kinase sensor and the yeast high osmotic glycerol mitogen-activated protein (MAP) kinase, respectively, have lower turgor than the wild type and do not exhibit the sustained hyperpolarization after hyperosmotic treatment. The os-1 mutant does not exhibit all of the wild-type turgor-adaptive ion fluxes (Cl uptake increases, but net K+ flux barely changes and net H+ efflux declines) (os-2 was not examined). Both os mutants are able to regulate turgor but at a lower level than the wild type. Our results demonstrate that a MAP kinase cascade regulates ion transport, activation of the H+-ATPase, and net K+ and Cl uptake during turgor regulation. Other pathways regulating turgor must also exist.  相似文献   

13.
Summary The ada + gene of E. coli is a regulatory gene of the adaptive response to simple alkylating agents. ada mutants are sensitive to both the mutagenicity and toxicity of alkylating agents, and are unable to induce O6-methylguanine DNA methyltransferase and 3-methyladenine DNA glycosylase II. The ada + gene was cloned from wild type E. coli B by ligating bacterial DNA partially digested with Sau3A into the cosmid vector pJB8. The hybrid cosmid, pCS33, conveyed N-methyl-N-nitro-N-nitrosoguanidine resistance to ada mutants of E. coli B and E. coli K12, and resulted in the constitutive synthesis of the two DNA repair enzymes at high levels. An alk mutation, which results in a deficiency of only the DNA glycosylase, was not complemented by this cosmid. It was concluded that the product of the ada + gene is a positive regulator of the adaptive response. The cosmid insert DNA was subcloned into the plasmid vector pAT153, and the ada + plasmids pCS42 and pCS58 selected. The ada + gene located in PCS58 by transposon mutagenesis and subcloning. Two polypeptides of Mr 37,000 and 27,000, were identified in maxicells as products of the ada + gene(s). It is as yet unclear whether they represent different forms of the same gene product, or are encoded by separate ada + genes within the same operon.  相似文献   

14.
Summary Slow-growing (inl +/-) spontaneous mutants have been isolated from an inositol requiring (inl) strain of Neurospora crassa that produces defective myo-inositol-1-phosphate synthase (MIPS), the enzyme responsible for the production of inositol-1-phosphate from glucose-6-phosphate. The defective enzyme has some residual activity. In the inl +/- strain the synthesis of the defective enzyme is enhanced, which enables the strain to grow slowly on minimal medium. The mutation (opi1) responsible for the partial inositol independence segregates independently from the inositol locus, and suppresses the inositolless character by overproduction of defective MIPS. opi1 acting upon the wild type (inl +) allele increases MIPS production and causes inositol excretion.  相似文献   

15.
16.
We have used the filamentous fungus, Neurospora crassa, as a model system to test the concept that antisense targeting of the cell-wall assembly enzyme, (1,3)β-glucan synthase [E.C. 2.4.1.34; UDP glucose: 1,3-β-D-glucan 3-β-D-glucosyltransferase], leads to a corresponding decrease in growth of the organism. Previously, our laboratory isolated a gene (glucan synthase-1, gs-1) that is required for (1,3)β-glucan synthase activity. Wild-type cells were transformed with DNA vectors encoding various RNAs complementary to the gs-1 messenger RNA (antisense RNA) cloned downstream from an inducible promoter (quinic acid-2 [qa-2p]). Stable transformants, expressing a partially inverted antisense message of gs-1 (pMYX107), exhibited dramatic reduction in growth compared with empty vector controls. Hyphal measurements of these transformants grown on race tubes indicated that all of the transformants showed various degrees of inhibition. Microscopic observations of transformants revealed shorter hyphal lengths when grown under conditions expressing antisense. Further characterization revealed that the specific activities of (1,3)β-glucan synthase were decreased by as much as 63% relative to empty vector controls. Together, these observations suggest that antisense against (1,3)β-glucan synthase led to a reduction in enzyme levels that resulted in altered cell-wall morphology and inhibition of growth. It is possible that antisense oligonucleotides against gs-1 may be useful antifungal agents. Received: 20 September 1996 / Accepted: 1 November 1996  相似文献   

17.
The specific activity of NAD+ kinase (ATP:NAD+ 2-phosphotransferase, EC 2.7.1.23) from Neurospora crassa shows sharp peaks when the organism enters a new developmental stage of the asexual life cycle: the peaks are observed during hydration and germination of conidia, at the transition from exponential to stationary growth and at the photostimulated conidiation. As stimulation of NAD+ kinase activity by light in conidiating mycelium is not sensitive to translation inhibitors, the activiation of pre-existing molecules, rather than induction of protein synthesis de novo may be supposed. Enzyme electrophoresis revealed the presence of four forms of NAD+ kinase having different apparent molecular weights (I=333,000; II=306,000; III=229,000 and IV=203,000). Manifestation of the activity of individual forms of NAD+ kinase is developmentally controlled: form III is most abundant during vegetative growth, forms I and II prevail in conidia. At the conidial germination the increase of NAD+ kinase activity is associated with the activation of form III, whereas during photostimulation of conidiation form II is the most activated one. Therefore, certain molecular forms of the enzyme may be regarded as biochemical markers for different developmental stages of N. crassa.  相似文献   

18.
The ro-4 mutant of the filamentous fungus Neurospora crassa forms distinctive colonies in which hyphae grow into rope-like aggregates. This unusual morphology coincides with a defect in hyphal nuclear migration. The ro-4 gene was cloned from a cosmid library by complementation of the closely linked pab-2 gene. The deduced 380 amino acid protein is most similar to the vertebrate actin-related protein/centractin. The R04 protein is not essential for cell viability, and new strains created by inducing point mutations at the ro-4 locus have a phenotype which is very similar to that of the original mutant. This study provides genetic evidence that an actin-related protein plays a role in nuclear motility. Since nuclear motility is believed to be a microtubule-dependent process, the ro-4 gene product may function as a component of the dynactin complex which activates force generation by cytoplasmic dynein.  相似文献   

19.
A series ofNeurospora crassamutants affected in the ability to regulate entry into conidiation (an asexual developmental program) were isolated by using an insertional mutagenesis procedure followed by a screening protocol. One of the mutants isolated by this approach consisted entirely of cells with an abnormal morphology. The mutant produces chains of swollen septated cells. The developmentally regulatedccg-1gene is constitutively expressed in these cells, suggesting that they have entered the conidial developmental program. The insertionally disrupted genecnb-1was isolated by plasmid rescue and found to encode calcineurin B, the regulatory subunit of the Ca2+and calmodulin-dependent protein phosphatase calcineurin. The data demonstrate that calcineurin B is required for normal vegetative growth inN. crassaand suggest that thecnb-1mutant is unable to repress entry into the asexual developmental program. The results suggest that Ca2+may play an important role in regulating fungal morphology.  相似文献   

20.
Summary Extracts of Rad+ and radiation-sensitive (rad) mutants of the yeast Saccharomyces cerevisiae were examined for total Mg2+-dependent alkaline deoxyribonuclease activity and the presence of a nuclease that crossreacts immunologically with an antiserum raised against an endoexonuclease from Neurospora crassa, an enzyme exhibiting both deoxyribo- and ribonuclease activities. No significant differences were observed in total deoxyribonuclease activity between Rad+ and rad mutants. The antibody precipitable activity, however, was found to be 30%–40% of the total alkaline deoxyribonuclease activity in logarithmically growing Rad+ cells. Extracts of stationary phase cells were lacking in antibody precipitable activity. Using immunoblot methods, a 72 kDa crossreacting protein was identified from logarithmically growing cells that was absent from stationary phase cells. In all radiation-sensitive mutants examined, except rad52, at least 20% of total activity was precipitable. Extracts from logarithmically growing rad52 mutants, including a rad52::LEU2 insertion mutant, exhibited less than 10% of the Rad+ precipitable activity; however, some crossreacting material was detected. Although, the level of endo-exonuclease activity is influenced by the RAD52 gene, it is not the product of this gene. The total deoxyribonuclease and the antibody precipitable endo-exonuclease activities were also followed during meiosis. Unlike the Rad+ strain which had previously been shown to have increased levels of total and immunoprecipitable endo-exonuclease as cells underwent meiosis, the rad52 mutant exhibited no increases in either category of nuclease activity. Given the importance of the RAD52 gene in repair, recombination and mutagenesis, the endo-exonuclease may be a significant component of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号