首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rat mesenteric vasculature contains high affinity binding sites specific for [3H]Arg8-vasopressin which mediate its vasoconstrictor action. We have investigated the in vitro effect of monovalent and divalent cations and guanine nucleotides on the interactions between [3H]Arg8-vasopressin and its receptor in this preparation. Binding was increased by divalent cations from fourfold in the presence of Mg2+ at 5 mM to ninefold in the presence of Mn2+ at 5 mM. The potency order of divalent cations to increase binding was Mn2+ greater than Co2+ greater than Ni2+ greater than Mg2+ greater than Ca2+ approximately equal to control without cations. Addition of Na2+ or other monovalent cations (K+, Li+, and NH4+) in the presence or absence of divalent cations reduced binding significantly. Analysis of saturation binding curves showed a single high affinity site. In the presence of 5 mM Mn2+, binding capacity (Bmax) increased to 139 +/- 23 fmol/mg protein. Receptor affinity was enhanced (KD decreased to 0.33 +/- 0.07 nM). In presence of 5 mM Mg2+ or 150 mM Na+, Bmax and affinity were reduced. The addition of 100 microM GTP or its nonhydrolyzable analogue, Gpp(NH)p, reduced receptor affinity in the presence of Mn2+ + Na+, Mg2+, and Mg2+ + Na+, but not in the presence of Mn2+ alone. Computer modeling of competition binding curves demonstrated that in contrast with saturation studies, the data were best explained by a two-site model with high affinity, low capacity sites and low affinity, high capacity sites. Mn2+ or Mn2+ + Na+ with or without guanine nucleotides resulted in a predominance of high affinity sites. GTP or Gpp(NH)p in the presence of Mg2+ or Mg2+ + Na+ induced a reduction of affinity of the high affinity binding sites and the number of these sites. In the presence of Mg2+ + Na+ and guanine nucleotides, high affinity sites were maximally decreased. An association kinetic study indicated that the association rate constant (K+1) was increased by divalent cations and reduced by guanine nucleotides, without change in the dissociation rate constant (K-1). The equilibrium dissociation constant (KD) calculated with these rate constants (K-1/K+1) was similar to that obtained in saturation experiments at steady state. Dissociation kinetics were biphasic, indicating the presence of two receptor states, one of high and one of low affinity, associated with a slow and a rapid dissociation rate. Cations and guanine nucleotides interact with one or more sites closely associated with vasopressin receptors, including possibly with a GTP-sensitive regulatory protein, to modulate receptor affinity for vasopressin.  相似文献   

2.
Due to multiple molecular species of platelet-activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors in human leukocytes and platelets. Human polymorphonuclear leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (KD) of 4.4 (+/- 0.3) x 10(-10) M. We compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One receptor antagonist (Ono-6240) was found to be 6-10 times less potent in inhibiting the specific [3H]PAF receptor binding, PAF-induced GTPase activity, as well as the PAF-induced aggregation in human leukocytes than in human platelets. Mg2+, Ca2+, and K+ ions potentiated the specific [3H]PAF binding in both systems. Na+ and Li+ ions inhibited the specific [3H]PAF binding to human platelets but showed no effects in human leukocytes. K+ ions decreased the Mg2+-potentiated [3H]PAF binding in human leukocytes but showed no effects in human platelets. PAF stimulates the hydrolysis of [gamma-32P] GTP with an ED50 of about 1 nM, whereas the biological inactive enantiomer shows no activity even at 10 microM in both human platelets and human leukocytes. The PAF-stimulated GTPase in human leukocytes can be abolished by the pretreatment of membranes with pertussis toxin and cholera toxin. However, the PAF-stimulated activity of GTPase in human platelets is insensitive to pertussis toxin and cholera toxin. These results suggest that there exists a second type of PAF receptor in human polymorphonuclear leukocytes, which is structurally different from the one characterized in human platelets, and that the guanine nucleotide-binding protein coupled to PAF receptors in human leukocytes is also different from the one in human platelets.  相似文献   

3.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Specific, saturable and reversible binding of tritium-labeled inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) to human platelet membranes is demonstrated. The Ins(1,4,5)P3-binding sites are abundant and display high selectivity for Ins(1,4,5)P3. Other inositol phosphates exhibit much lower affinity for this site. The specific [3H]Ins(1,4,5)P3 binding was found to be modulated by pH, monovalent and divalent cations, and GTP. A sharp increase in binding occurs at slightly alkaline pH. The monovalent cations, Na+, K+ and Li+ almost double the binding at 30 mM. Mg2+ inhibits the specific [3H]Ins(1,4,5)P3 binding. At low concentrations of Ca2+, the binding is inhibited, but at concentrations higher than 5 mM the binding is potentiated and increases by almost 5-fold at 100 mM. Similar pattern of the effects is also observed for Mn2+ and Sr2+. The specific [3H]Ins(1,4,5)P3 binding is specifically inhibited by GTP. Other nucleotides also inhibit the binding but at higher concentrations. From saturation binding studies, Ca2+ potentiation seems to be due to the conversion of the receptor from the low-affinity state to the high-affinity one. In the absence of Ca2+, the Scatchard plot is nonlinear and concave, and statistically can be fitted best with two equilibrium dissociation constants (Kd values), 0.19 +/- 0.11 and 13.2 +/- 18.1 nM, respectively, for high- and low-affinity binding sites. However, in the presence of 100 mM CaCl2, the Scatchard plot reveals only the high-affinity binding sites with a Kd value of 0.32 +/- 0.15 nM. The specific Ins(1,4,5)P3 receptor in human platelets could therefore exist in multiple conformational states to regulate the intracellular Ca2+ concentration.  相似文献   

5.
We have investigated the binding of 3-[125I]iododizocilpine ([125I]iodo-MK-801) to the N-methyl-D-aspartate (NMDA) receptor in well-washed rat brain membranes. [125I]Iododizocipline binding was displaced by the following: dizocilpine greater than thienylphencyclidine greater than phencyclidine greater than ketamine. Binding of [125I]iododizocilpine was enhanced by glutamate, glycine, and spermidine, whose actions could be reversed by CGS-19755, 7-chlorokynurenate, and arcaine, respectively. [125I]Iododizocilpine binding was also enhanced by a number of divalent cations, including Ba2+, Ca2+, Mg2+, Mn2+, and Sr2+, and several monovalent cations, including Na+ and K+. These cations enhanced [125I]iododizocilpine binding by an action at the polyamine site. In addition, the inhibitory effects associated with high concentrations of these cations was markedly reduced compared to those found in previous studies with [3H]dizocilpine. Analysis of the ability of spermidine, Mg2+, and Sr2+ to alter the inhibition of [125I]iododizocilpine by arcaine gave pA2 values of 5.41, 4.47, and 4.93, corresponding to EC50 concentrations of 3.9, 34.7, and 12.0 microM, respectively, suggesting that physiological concentrations of Mg2+ may occupy the polyamine site. These results demonstrate that [125I]iododizocilpine is a useful probe for the NMDA receptor. Moreover, its high specific activity and relative insensitivity to the inhibitory actions of divalent cations should make [125I]iododizocilpine a valuable ligand for the study of NMDA receptors in intact cellular systems.  相似文献   

6.
The binding of [3H]vasopressin (AVP) and the 125I-labelled vasopressin antagonist (VP-AT) d(CH2)5[Tyr2(Me),Tyr9(NH2)]AVP to rat liver membranes was examined with or without the addition of milimolar concentrations of divalent cations. The binding of vasopressin was enhanced by Mg2+ and Co2+ and markedly decreased by EGTA. The addition of EGTA and Mg2+ together restored the binding to a value similar to that of Mg2+ alone. On the contrary, the addition of Mg2+, Co2+, EGTA, and the combination of EGTA and Mg2+ decreased the binding of VP-AT to rat liver membranes. Kinetic analyses showed that Mg2+ increased the Kd twofold for VP-AT; that is from 0.13 nM to 0.28 nM. Moreover, it showed that the receptor with or without the addition of Mg2+ consists of a single population of binding sites, indicating that the receptor is switched from a high affinity to a low affinity state for VP-AT in the presence of 10 mM Mg2+. GTP gamma S was unable to block the effect of Mg2+ on the binding of VP-AT. These results suggest that this divalent cation interacts with receptor itself producing a conformational changes which thus modulates the affinity of the receptor.  相似文献   

7.
The verapamil receptor associated with the voltage-dependent calcium channel of rabbit skeletal muscle transverse tubule membranes has the following properties. (i) This receptor is stereospecific and discriminates between the different stereoisomers of verapamil, gallopamil and diltiazem. (ii) Inorganic divalent cations inhibit the binding of [3H]verapamil to its receptor in an apparently non-competitive fashion. The rank order of potency is: Ca2+ = Mn2+ greater than Mg2+ greater than Sr2+ greater than Ba2+ much greater than Co2+ much greater than Ni2+. Ca2+ and Mn2+ have inhibition constants of 0.3 mM. Binding of [3H]verapamil is also sensitive to monovalent cations such as Cs+, K+, Li+ and Na+. The most active of these cations (Cs+ and K+) have inhibition constants in the range of 30 mM. (iii) Binding of [3H]verapamil is pH-dependent and reveals the presence on the verapamil receptor of an essential ionizable group with a pKa of 6.5. (iv) A low-affinity binding site for verapamil and for some other Ca2+ channel blockers is detected by studies of dissociation kinetics of the [3H]verapamil receptor in the presence of high concentrations of verapamil, gallopamil, bepridil and diltiazem. (v) GTP and nucleoside analogs change the properties of [3H]verapamil binding to verapamil binding sites. High-affinity binding sites seem to be transferred into low-affinity sites. Dissociation constants obtained from inhibition studies of [3H]verapamil binding are in the range of 0.1-0.3 mM for GTP, ATP and Gpp(NH)p.  相似文献   

8.
One of the earliest signs of endometrial preparation for blastocyst implantation is a localized increase in capillary permeability, an event that is essentially inflammatory in character and thought to be a prerequisite for subsequent decidual tissue formation. Platelet-activating factor (PAF), chemically identified as 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, is a very potent vasoactive compound that recently has been implicated in the implantation process. In the present study, PAF binding sites are characterized in the rabbit uterus. A specific, reversible, saturable, and thermally labile binding of [3H]PAF to uterine membranes has been demonstrated, exhibiting multiple binding sites. The equilibrium dissociation constant (Kd) of the higher affinity binding site (type 1) was 3.6 +/- 0.4 nM (mean +/- SD) with a binding capacity (Bmax) of 3.4 +/- 1.6 pmol/mg protein. The second (lower affinity) binding site (type 2) had an apparent Kd of 114.6 +/- 13.5 nM and a Bmax of 164.3 +/- 17.6 pmol/mg membrane protein, under the conditions of maximal [3H]PAF binding, 25 degrees C, 150 min. Incubations at 4 degrees C for up to 3 h yielded only 30% of the Bmax observed at 25 degrees C. In crude and purified endometrial membrane preparations in which the PAF binding was predominantly located, the affinity of the binding for PAF was significantly higher than for the whole uterus, giving Kds of 1.5 +/- 0.8 and 0.8 +/- 0.5 nM; these latter values were not significantly different. However, the Bmax values of 3.9 +/- 0.9 pmol/mg protein and 376.8 +/- 163.3 fmol/mg protein for the two endometrial preparations, respectively, did differ significantly. Kinetic analysis at 25 degrees C resulted in a calculated Kd of 3.28 +/- 1.14 nM, which did not differ from the value for for the whole uterus at the same temperature, but was greater than for the endometrial preparations. Using 4 nM [3H]PAF to selectively label only the type 1 binding sites, the relative potencies of PAF and its antagonists in displacing [3H]PAF were lyso-PAF greater than CV3988 greater than PAF greater than U66985 greater than A02405 greater than BN52021 greater than U66982. The antagonists SRI 63,441 and L652,731 were ineffective in displacing [3H]PAF at up to 5000-fold molar excess of [3H]PAF. [3H]Lyso-PAF binding at 4 nM was displaceable by PAF. All cations tested, i.e. Ca2+, Mg2+, K+, Na+, and Li+, inhibited [3H]PAF binding. Serine hydrolase inhibitors, diisopropylfluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF), inhibited binding, but bacitracin, leupeptin, and antipain stabilized it.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The effects of mono- and di-valent cations and the nonhydrolyzable guanyl nucleotide derivative 5'-guanylimidodiphosphate (Gpp(NH)p) on the binding of the selective, high affinity mu-opiate receptor agonist, [3H]DAGO ([3H]Tyr-D-Ala-Gly-Mephe-Gly-ol), to rat brain membranes were studied in a low ionic strength 5 mM Tris-HCl buffer. Na+ and Li+ (50 mM) maximally increased [3H]DAGO binding (EC50 values for Na+, 2.9 mM and Li+, 6.2 mM) by revealing a population of low affinity binding sites. The density of high affinity [3H]DAGO binding sites was unaffected by Na+ and Li+, but was maximally increased by 50 mM K+ and Rb+ (EC50 values for K+, 8.5 mM and Rb+, 12.9 mM). Divalent cations (Ca2+, Mg2+; 50 mM) inhibited [3H]DAGO binding. Gpp(NH)p decreased the affinity of [3H]DAGO binding, an effect that was enhanced by Na+ but not by K+. The binding of the mu-agonist [3H]dihydromorphine was unaffected by 50 mM Na+ in 5 mM Tris-HCl. In 50 mM Tris-HCl, Na+ (50 mM) inhibited [3H]DAGO binding by decreasing the density of high affinity binding sites and promoting low affinity binding. The effects of Na+ in 5 mM and 50 mM Tris-HCl were also investigated on the binding of other opiate receptor agonists and antagonists. [3H]D-Ala-D-Leu-enkephalin binding was increased and inhibited. [3H]etorphine binding increased and was unchanged, and both [3H]bremazocine and [3H]naloxone binding increased by 50 mM Na+ in 5 mM and 50 mM Tris-HCl, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have studied the effects of several cations on (1) the neuronal uptake of [3H]dopamine ([3H]DA) and (2) the specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl)piperazi ne ([3H]GBR 12783) to a site associated with the neuronal carrier of DA, in preparations obtained from rat striatum. When studied under the same experimental conditions, both the uptake of [3H]DA and the binding of [3H]GBR 12783 were similarly impaired by the gradual replacement of NaCl by sucrose. In both processes, no convenient substitute for Na+ was found. Furthermore, potential substitutes of Na+ acted as inhibitors of the uptake with a rank order of potency as follows: K+ = Li+ > or = Cs+ > or = Rb+ > choline+ > Tris+ > sucrose, which was somewhat different from that observed in binding studies, i.e., Cs+ > Rb+ > choline+ > or = K+ > Li+ > Tris+ > sucrose. In the presence of either 36 mM or 136 mM Na+, [3H]DA uptake was optimal with 2 mM Mg2+, 1 mM K+, or 1 mM Ca2+. In contrast, higher concentrations of divalent cations competitively blocked the uptake process. K+ concentrations > 50 mM impaired the specific binding, whereas in the millimolar range of concentrations, K+ noncompetitively inhibited the uptake. Decreasing the Na+ concentration increased the inhibitory effect of K+, Ca2+, and Mg2+ on the specific uptake. An increase in NaCl concentration from 0 to 120 mM elicited a significant decline in the affinity of some substrates for the [3H]GBR 12783 binding site. An uptake study performed using optimal experimental conditions defined in the present study revealed that decreasing Na+ concentration reduces the affinity of DA for the neuronal transport. We propose a hypothetical model for the neuronal transport of DA in which both Na+ and K+ membrane gradients are involved.  相似文献   

11.
The binding isotherms of opioid receptors in rat brain membranes with [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE), [3H]dihydromorphine ([3H]DHM), and [3H]etorphine were analysed to show the effects of Mg2+, Na+, and guanine nucleotides. Four opioid receptor subtypes of delta, kappa, mu 1, and mu 2 specificities were differentiated, where necessary with the aid of specific displacing ligands. Both a guanine nucleotide [guanosine-5'-(beta, gamma-imido)triphosphate] and the cations (Na+, Mg2+) affect the affinity state of all four subtypes of the receptor. The opioid binding behaviour is found on detailed inspection to be complex, with cases of "half-of-the-sites" reactivity and of cooperativity. By their behaviour under the various ionic conditions noted, it was concluded that these subtypes are distinct, without the need to assume interconvertibility by such agents. The evidence suggests that the formation of heterologous kappa-delta or mu 1-mu 2 receptor complexes is required for stabilization of the high-affinity conformational state of the receptor. Important effects of cations in increasing the binding and regulating the equilibria of receptor association-dissociation were observed when these studies were conducted, not in the Tris-HCl buffer commonly used in opioid binding assays, but in N-tris[hydroxymethyl]-methyl-2-aminoethanesulphonate (K+) buffer (TES-KOH; 10 mM, pH 7.5): it was found that ionic species of Tris can substitute for divalent cations. Dithiothreitol effects on agonist binding in the presence and absence of the cations suggested that those cation effects involve the exchange of -SH/-SS- bonds between receptor subunits. All of the behaviour is interpreted in terms of a model involving association-dissociation equilibria of homologous and/or heterologous receptor subunits of an oligomeric opioid receptor structure.  相似文献   

12.
The influence of Ca2+, Mg2+, Mn2+, Sr2+, La3+, Nd3+, Sm3+, Eu3+, and Gd3+ ions on the binding of labeled, stable enkephalin analogue, [3H-Tyr1, D-Ala2, D-Leu5]enkephalin, to opiate receptors of the rat brain membrane preparations has been investigated. The formation of the complex can be described by a scheme involving at least two independent binding sites. The high affinity site does not discriminate the divalent and trivalent metal ions: all examined cations enhanced the enkephalin affinity for this site. The ligand binding to the low affinity site is potentiated only by Mn2+, Mg2+, and lathanoides. The maximal concentration of the binding sites of the above two types is not affected by the cations. The increase in the ionic strength of the solution entails a decrease in the affinity of the ligand for the high affinity binding site. It is shown that the effect of both di- and trivalent metal cations on the [3H-Tyr1, D-Ala2, D-Leu3] enkephalin binding is mediated through one cation attachment site on the respective enkephalin receptor.  相似文献   

13.
Monovalent and divalent cations competitively displace tetrodotoxin and saxitoxin (STX) from their binding sites on nerve and skeletal muscle Na channels. Recent studies of cloned cardiac (toxin-resistant) and brain (toxin-sensitive) Na channels suggest important structural differences in their toxin and divalent cation binding sites. We used a partially purified preparation of sheep cardiac Na channels to compare monovalent and divalent cation competition and pH dependence of binding of [3H]STX between these toxin-resistant channels and toxin-sensitive channels in membranes prepared from rat brain. The effects of several chemical modifiers of amino acid groups were also compared. Toxin competition curves for Na+ in heart and Cd2+ in brain yielded similar KD values to measurements of equilibrium binding curves. The monovalent cation sequence for effectiveness of [3H]STX competition is the same for cardiac and brain Na channels, with similar KI values for each ion and slopes of -1. The effectiveness sequence corresponds to unhydrated ion radii. For seven divalent cations tested (Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cd2+, and Zn2+) the sequence for [3H]STX competition was also similar. However, whereas all ions displaced [3H]STX from cardiac Na channels at lower concentrations, Cd2+ and Zn2+ did so at much lower concentrations. In addition, and by way of explication, the divalent ion competition curves for both brain and cardiac channels (except for Cd2+ and Zn2+ in heart and Zn2+ in brain) had slopes of less than -1, consistent with more than one interaction site. Two-site curves had statistically better fits than one-site curves. The derived values of KI for the higher affinity sites were similar between the channel types, but the lower affinity KI's were larger for heart. On the other hand, the slopes of competition curves for Cd2+ and Zn2+ were close to - 1, as if the cardiac Na channel had one dominant site of interaction or more than one site with similar values for KI. pH titration of [3H]STX binding to cardiac channels showed a pKa of 5.5 and a slope of 0.6-0.9, compared with a pKa of 5.1 and slope of 1 for brain channels. Tetramethyloxonium (TMO) treatment abolished [3H]STX binding to cardiac and brain channels and STX protected channels, but the TMO effect was less dramatic for cardiac channels. Trinitrobenzene sulfonate preferentially abolished [3H]STX binding to brain channels by action at an STX protected site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Colony-stimulating factor 1 (CSF-1) regulates the survival, growth, and differentiation of monocytes through binding to a single class of high affinity receptors. The present studies demonstrate that the interaction of CSF-1 with monocyte membranes is associated with a 2.4-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of the GTP gamma S binding data indicated that CSF-1 stimulates GTP binding by increasing the affinity, rather than the number, of available sites. This stimulation of GTP binding by CSF-1 was also associated with an increase in GTPase activity. Furthermore, the CSF-1-induced stimulation of GTPase activity was sensitive to pertussis toxin. We also demonstrate that CSF-1 stimulates Na+ influx into monocytes by an amiloride-sensitive mechanism, presumably the Na+/H+ antiport. This CSF-1-stimulated influx of Na+ was further associated with an increase in Na+,K+-ATPase activity. Moreover, this stimulation of Na+ influx and Na+,K+-ATPase activity by CSF-1 was sensitive to pertussis toxin. Finally, we demonstrate that CSF-1-induced proliferation is also a pertussis toxin-sensitive event. The present findings thus suggest: 1) that the CSF-1 receptor is linked to a pertussis toxin-sensitive G protein; and 2) that a pertussis toxin-sensitive G protein is involved in the induction of Na+ influx by CSF-1.  相似文献   

15.
The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of [3H]FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM [3H]FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. [3H]FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of [3H]FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM [3H]FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state.  相似文献   

16.
B Votta  S Mong 《Life sciences》1990,46(4):309-313
Binding of the radiolabeled platelet-activating-factor (PAF) receptor antagonist RP52770, [( 3H]-N-(3-chlorophenyl)-3-(3-pyridinyl)-1H, 3H-pyrrolo- [1,2-c]thiazole-7-carboxamide) to receptors in human lung membranes was time- dependent, protein-dependent, reversible and saturable. The dissociation constant and maximal binding density were 14 +/- 2 nM and 2.1 +/- 0.6 pmol/mg protein, respectively. [3H]-RP52770 binding to the PAF receptor was competitively displaced by PAF and receptor antagonists. The rank order of the binding affinities were PAF greater than RP52770 (+) greater than RP52770 (-) greater than CV3988, equivalent to the PAF receptor specificities determined from functional studies. Binding of PAF to [3H]-RP52770 labeled receptors was regulated by sodium, guanylylimido- diphosphate (GppNHp) and divalent cations. In the presence of EDTA, Na+ and GppNHp, in combination, binding of PAF to the receptor was maximally shifted to the right. These results clearly demonstrate that cations and guanine nucleotide can regulate the affinity states of the PAF receptor in human lung membranes.  相似文献   

17.
The muscarinic acetylcholine receptor was solubilized, in a sensitive form for GTP and Na+, from bovine cerebral cortex using a zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate. The solubilized muscarinic receptor displayed characteristics as follows: (1) high affinity to nanomolar concentration of Z-[3H]quinuclidinyl benzilate; (2) muscarinic agonists and antagonists had similar inhibitory potencies as on the membrane-bound receptor; (3) without Na+, GTP did not significantly alter the binding affinity of muscarinic agonists and antagonists; (4) GTP in the presence of Na+, selectively decreased the affinity of muscarinic agonists, carbamylcholine and oxotremoline, but not the antagonist binding affinity; (5) Na+ in the absence or presence of GTP, reduced both muscarinic agonist and antagonist affinities.  相似文献   

18.
Mutational analyses have suggested that BK channels are regulated by three distinct divalent cation-dependent regulatory mechanisms arising from the cytosolic COOH terminus of the pore-forming alpha subunit. Two mechanisms account for physiological regulation of BK channels by microM Ca2+. The third may mediate physiological regulation by mM Mg2+. Mutation of five aspartate residues (5D5N) within the so-called Ca2+ bowl removes a portion of a higher affinity Ca2+ dependence, while mutation of D362A/D367A in the first RCK domain also removes some higher affinity Ca2+ dependence. Together, 5D5N and D362A/D367A remove all effects of Ca2+ up through 1 mM while E399A removes a portion of low affinity regulation by Ca2+/Mg2+. If each proposed regulatory effect involves a distinct divalent cation binding site, the divalent cation selectivity of the actual site that defines each mechanism might differ. By examination of the ability of various divalent cations to activate currents in constructs with mutationally altered regulatory mechanisms, here we show that each putative regulatory mechanism exhibits a unique sensitivity to divalent cations. Regulation mediated by the Ca2+ bowl can be activated by Ca2+ and Sr2+, while regulation defined by D362/D367 can be activated by Ca2+, Sr2+, and Cd2+. Mn2+, Co2+, and Ni2+ produce little observable effect through the high affinity regulatory mechanisms, while all six divalent cations enhance activation through the low affinity mechanism defined by residue E399. Furthermore, each type of mutation affects kinetic properties of BK channels in distinct ways. The Ca2+ bowl mainly accelerates activation of BK channels at low [Ca2+], while the D362/D367-related high affinity site influences both activation and deactivation over the range of 10-300 microM Ca2+. The major kinetic effect of the E399-related low affinity mechanism is to slow deactivation at mM Mg2+ or Ca2+. The results support the view that three distinct divalent-cation binding sites mediate regulation of BK channels.  相似文献   

19.
G M Ananyev  A Murphy  Y Abe  G C Dismukes 《Biochemistry》1999,38(22):7200-7209
The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ > Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ > Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.  相似文献   

20.
The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2+, Mn2+, Ca2+ and Co2+ augmented the binding of both T* SS-14 and LTT* SS-28, while higher than 4 mM Co2+ inhibited binding of both ligands. LTT* SS-28 binding was reduced in the presence of high concentrations of Ba2+ and Mn2+ also. Interestingly Ca2+ at higher than 10 mM preferentially inhibited LTT* SS-28 binding and increased the affinity of SS-14 but not SS-28 for LTT* SS-28 binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号