首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the −2,015 bp 5′-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and β-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds. Progressive 5′-deletions up to the −963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression. Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both EGFP intensity and fluorometric GUS activity, respectively.  相似文献   

2.
Summary An EMS (ethyl methanesulfonate) mutagenesis effector screen performed with the STM:GUS marker line in Arabidopsis thaliana identified a loss-of-function allele of the TORNADO2 gene. The histological and genetic analyses described here implicate TRN2 in SAM function, where the peripheral zone in trn2 mutants is enlarged relative to the central stem cell zone. The trn2 mutant allele partially rescues the phenotype of shoot meristemless mutants but behaves additively to wuschel and clavata3 alleles during the vegetative phase and in the outer floral whorls. The development of carpels in trn2 wus-1 double mutant flowers indicates that pluripotent cells persist in floral meristems in the absence of TRN2 function and can be recruited for carpel anlagen. The data implicate a membrane-bound plant tetraspanin protein in cellular decisions in the peripheral zone of the SAM.  相似文献   

3.
The rising and setting of the sun marks a transition between starkly contrasting environmental conditions for vegetative life. Given these differing diurnal and nocturnal environmental factors and the inherent regularity of the transition between the two, it is perhaps unsurprising that plants have developed an internal timing mechanism (known as a circadian clock) to allow modulation of gene expression and metabolism in response to external cues. Entrainment of the circadian clock, primarily via the detection of changes in light and temperature, maintains synchronization between the surrounding environment and the endogenous clock mechanism. In this review, recent advances in our understanding of the molecular workings of the plant circadian clock are discussed as are the input pathways necessary for entrainment of the clock machinery.  相似文献   

4.
5.
6.
Complex signal transduction pathways underlie the myriad plant responses to attack by pathogens. Ca2+ is a universal second messenger in eukaryotes that modulates various signal transduction pathways through stimulus-specific changes in its intracellular concentration. Ca2+-binding proteins such as calmodulin (CaM) detect Ca2+ signals and regulate downstream targets as part of a coordinated cellular response to a given stimulus. Here we report the characterization of a tomato gene (APR134) encoding a CaM-related protein that is induced in disease-resistant leaves in response to attack by Pseudomonas syringae pv. tomato. We show that suppression of APR134 gene expression in tomato (Solanum lycopersicum), using virus-induced gene silencing (VIGS), compromises the plant’s immune response. We isolated APR134-like genes from Arabidopsis, termed CML42 and CML43, to investigate whether they serve a functionally similar role. Gene expression analysis revealed that CML43 is rapidly induced in disease-resistant Arabidopsis leaves following inoculation with Pseudomonas syringae pv. tomato. Overexpression of CML43 in Arabidopsis accelerated the hypersensitive response. Recombinant APR134, CML42, and CML43 proteins all bind Ca2+ in vitro. Collectively, our data support a role for CML43, and APR134 as important mediators of Ca2+-dependent signals during the plant immune response to bacterial pathogens. This work was supported by a research grant (WAS) and postgraduate scholarships (DC, SLD) from the Natural Science and Engineering Research Council of Canada, the National Science Foundation (IBN-0109633; GBM), and the Swedish Research Council (SKE).  相似文献   

7.
A chalcone synthase (CHS)-like gene, MpCHSLK1, was isolated from liverwort, Marchantia paleacea var. diptera. Phylogenetic analysis revealed that MpCHSLK1 is closely related to stilbene synthase of the whisk fern, Psilotum nudum. Southern blot analysis using an MpCHSLK1 probe revealed that the gene belongs to a small gene family. Northern blot analysis indicated that CHS-like genes were expressed in either the mother plants or photoautotrophic cells. In photoautotrophic cells, the CHS-like genes were expressed light-dependently, and this expression was completely inhibited by the photosynthetic electron transport inhibitor, DCMU.Abbreviations CHS Chalcone synthase - DCMU 3-(3,4-Dichlorophenyl)-1-1-dimethylurea - POR Protochlorophyllide oxidoreductase - STS Stilbene synthase  相似文献   

8.
The ankyrin (ANK) gene cluster is a part of a multigene family encoding ANK transmembrane proteins in Arabidopsis thaliana, and plays an important role in protein-protein interactions and in signal pathways. In contrast to other regions of a genome, the ANK gene cluster exhibits an extremely high level of DNA polymorphism in an ∼5-kb region, without apparent decay. Phylogenetic analysis detects two clear, deeply differentiated haplotypes (dimorphism). The divergence between haplotypes of accession Col-0 and Ler-0 (Hap-C and Hap-L) is estimated to be 10.7%, approximately equal to the 10.5% average divergence between A. thaliana and A. lyrata. Sequence comparisons for the ANK gene cluster homologues in Col-0 indicate that the members evolve independently, and that the similarity among paralogues is lower than between alleles. Very little intralocus recombination or gene conversion is detected in ANK regions. All these characteristics of the ANK gene cluster are consistent with a tandem gene duplication and birth-and-death process. The possible mechanisms for and implications of this elevated nucleotide variation are also discussed, including the suggestion of balancing selection.  相似文献   

9.
Dong HP  Yu H  Bao Z  Guo X  Peng J  Yao Z  Chen G  Qu S  Dong H 《Planta》2005,221(3):313-327
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.  相似文献   

10.
Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The β-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85–90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.  相似文献   

11.
Jung JH  Park CM 《Planta》2007,225(6):1327-1338
The miR166/165 group and its target genes regulate diverse aspects of plant development, including apical and lateral meristem formation, leaf polarity, and vascular development. We demonstrate here that MIR166/165 genes are dynamically controlled in regulating shoot apical meristem (SAM) and floral development in parallel to the WUSCHEL (WUS)-CLAVATA (CLV) pathway. Although miR166 and miR165 cleave same target mRNAs, individual MIR166/165 genes exhibit distinct expression domains in different plant tissues. The MIR166/165 expression is also temporarily regulated. Consistent with the dynamic expression patterns, an array of alterations in SAM activities and floral architectures was observed in the miR166/165-overproducing plants. In addition, when a MIR166a-overexpressing mutant was genetically crossed with mutants defective in the WUS-CLV pathway, the resultant crosses exhibited additive phenotypic effects, suggesting that the miR166/165-mediated signal exerts its role via a distinct signaling pathway.  相似文献   

12.
To ensure that the initiation of flowering occurs at the correct time of year, plants need to integrate a diverse range of external and internal signals. In Arabidopsis, the photoperiodic flowering pathway is controlled by a set of regulators that include CONSTANS (CO). In addition, Arabidopsis plants also have a family of genes with homologies to CO known as CO-LIKE (COL) about which relatively little is known. In this paper, we describe the regulation and interactions of a novel member of the family, COL5. The expression of COL5 is under circadian and diurnal regulation, but COL5 itself does not appear to affect circadian rhythms. COL5, like CO, is regulated by GIGANTEA. Furthermore, COL5 is expressed in the vascular tissue. Using COL5 over-expressing lines we show that, under short days, constitutive expression of COL5 affects flowering time and the expression of the floral integrator genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO 1. Constitutive expression of COL5 partially suppresses the late flowering phenotype of the co-mutant plants. However, plants with loss of COL5 function do not show altered flowering. Taken together, our results suggest that COL5 has COL activity, but may either not have a role in regulating flowering in wild-type plants or may act redundantly with other flowering regulators. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Recent studies of glucose (Glc) sensing and signaling have revealed that Glc acts as a critical signaling molecule in higher plants. Several Glc sensing-defective Arabidopsis mutants have been characterized in detail, and the corresponding genes encoding Glc-signaling proteins have been isolated. However, the full complexity of Glc signaling in higher plants is not yet fully understood. Here, we report the identification and characterization of a new Glc-insensitive mutant, gaolaozhuangren2 (glz2), which was isolated from transposon mutagenesis experiments in Arabidopsis. In addition to its insensitivity to Glc, the glz2 plant exhibits several developmental defects such as short stature with reduced apical dominance, short roots, small and dark-green leaves, late flowering and female sterility. Treatment with 4% Glc blocked expression of the OE33 gene in wild-type plants, whereas expression of this gene was unchanged in the glz2 mutant plants. Taken together, our results suggest that the GLZ2 gene is required for normal glucose response and development of Arabidopsis.Mingjie Chen and Xiaoxiang Xia contributed equally to this work.  相似文献   

14.
15.
In order to study the effect of repression of 14-3-3 genes on actual activity of the nitrate reductase (NR) in Nicotiana benthamiana leaves, Nb14-3-3a gene was silenced by virus-induced gene silencing (VIGS) method using potato virus X (PVX). Expression of Nb14-3-3a as well as Nb14-3-3b genes was altogether repressed in the leaves of PVX-14-3a-infected plants. Furthermore, two-dimensional gel electrophoresis and immunoblot analysis with anti-14-3-3 antiserum suggested that the expressions of Nb14-3-3a and Nb14-3-3b proteins are accordingly repressed in PVX-14-3a-infected plants. It is well known that binding of 14-3-3 proteins to phosphorylated NR leads to substantial decrease in NR activity of leaves under darkness. Therefore, we studied the changes in NR activity in response to light/dark transitions in the leaves of PVX-14-3a-infected plants. NR activation state was kept at a high level under darkness in PVX-14-3a-infected plants, but not in PVX-green fluorescent protein (GFP)-infected and control plants. This result suggests that Nb14-3-3a and/or Nb14-3-3b proteins are indeed involved in the inactivation of NR activity under darkness in N. benthamiana.  相似文献   

16.
Sauerbrunn N  Schlaich NL 《Planta》2004,218(4):552-561
Using a cDNA-array we identified expressed sequence tag 163B24T7 as rapidly up-regulated in Arabidopsis thaliana (L.) Heynh. after pathogen exposure. Detailed expression analysis revealed that the corresponding gene is up-regulated not only after exposure to avirulent Pseudomonas syringae pv. tomato but also to virulent strains. This up-regulation is dependent on functional salicylic acid defence-signalling pathways. Moreover, we found the gene was circadian-regulated, showing peaks of expression at the end of the day. Using plants overexpressing the clock component CCA1, we showed that the PCC1 gene is regulated by the inner clock of Arabidopsis. Accordingly, we named the gene PCC1, for pathogen and circadian controlled. PCC1 is a member of a novel family of six small polypeptides in Arabidopsis. A functional role for PCC1 in plant defence was demonstrated since plants overexpressing PCC1 are resistant against normally virulent oomycetes. Thus, PCC1 demonstrates a potential interrelationship between pathogen and circadian signalling pathways.Abbreviations cfu Colony-forming units - EST Expressed sequence tag - Pst Pseudomonas syringae pv. tomato - TAIR The Arabidopsis information resource  相似文献   

17.
18.
Capsaicinoids are responsible for the pungent taste of chili pepper fruits of Capsicum species. Capsaicinoids are biosynthesized through both the phenylpropanoid and the branched-fatty acids pathways. Fragments of Comt (encoding a caffeic acid O-methyltransferase), pAmt (a putative aminotransferase), and Kas (a β-keto-acyl-[acyl-carrier-protein] synthase) genes, that are differentially expressed in placenta tissue of pungent chili pepper, were individually inserted into a Pepper huasteco yellow veins virus (PHYVV)-derived vector to determine, by virus-induced gene silencing, irrespective of whether these genes are involved in the biosynthesis of capsaicinoids. Reduction of the respective mRNA levels as well as the presence of related siRNAs confirmed the silencing of these three genes. Morphological alterations were evident in plants inoculated with PHYVV::Comt and PHYVV::Kas constructs; however, plants inoculated with PHYVV::pAmt showed no evident alterations. On the other hand, fruit setting was normal in all cases. Biochemical analysis of placenta tissues showed that, indeed, independent silencing of all three genes led to a dramatic reduction in capsaicinoid content in the fruits demonstrating the participation of these genes in capsaicinoid biosynthesis. Using this approach it was possible to generate non-pungent chili peppers at high efficiency.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号