首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Cdc7-Dbf4 kinase complexes, conserved widely in eukaryotes, play essential roles in initiation and progression of the S phase. Cdc7 kinase activity fluctuates during cell cycle, and this is mainly the result of oscillation of expression of the Dbf4 subunit. Therefore, it is crucial to understand the mechanisms of regulation of Dbf4 expression. We have isolated and characterized the promoter region of the human ASK gene encoding Dbf4-related regulatory subunit for human Cdc7 kinase. We have identified a 63-base pair ASK promoter segment, which is sufficient for mediating growth stimulation. This minimal promoter segment (MP), containing an Sp1 site but no canonical E2F site, can be activated by ectopic E2F expression as well. Within the 63-base pair region, the Sp1 site as well as other elements are essential for stimulation by growth signals and by E2F, whereas an AT-rich sequence proximal to the coding region may serve as an element required for suppression in quiescence. Gel shift assays in the presence of an antibody demonstrate the presence of E2F1 in the protein-DNA complexes generated on the MP segment. However, the complex formation on MP was not competed by a DHFR promoter fragment, known to bind to E2F, nor by a consensus E2F binding oligonucleotide. Gel shift assays with point mutant MP fragments indicate that a non-canonical E2F site in the middle of this segment is critical for generation of the E2F complex. Our results suggest that E2F regulates the ASK promoter through an atypical mode of recognition of the target site.  相似文献   

6.
M Mudryj  S H Devoto  S W Hiebert  T Hunter  J Pines  J R Nevins 《Cell》1991,65(7):1243-1253
We have examined E2F binding activity in extracts of synchronized NIH 3T3 cells. During the G0 to G1 transition, there is a marked increase in the level of active E2F. Subsequently, there are changes in the nature of E2F-containing complexes. A G1-specific complex increases in abundance, disappears, and is then replaced by another complex as S phase begins. Analysis of extracts of thymidine-blocked cells confirms that the complexes are cell cycle regulated. We also show that the cyclin A protein is a component of the S phase complex. Each complex can be dissociated by the adenovirus E1A 12S product, releasing free E2F. The release of E2F from the cyclin A complex coincides with the stimulation of an E2F-dependent promoter. We suggest that these interactions control the activity of E2F and that disruption of the complexes by E1A contributes to a loss of cellular proliferation control.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The utility of adenovirus vectors for gene therapy is limited by the transience of expression that has been observed in various in vivo models. Immunological responses to viral targets can eliminate transduced cells and cause the loss of transgene expression. We previously described the characterization of an E4 modified adenovirus, Ad2E4ORF6, which is replication defective in cotton rats. We reasoned that gene transfer vectors based on Ad2E4ORF6 would have a reduced potential for viral gene expression in vivo which might be beneficial for achieving persistence of transgene expression. E1 replacement vectors expressing the cystic fibrosis transmembrane regulator or beta-galactosidase were constructed as series of vectors that differed with respect to the E4 region. Vectors containing a wild-type E4 region, E4 open reading frame 6, or a complete E4 deletion were compared in the lungs of BALB/c mice for persistence of expression. Results obtained with nude mice indicate that nonimmunological factors have a major influence on the longevity of transgene expression. Expression was transient from the E1a promoter with all vectors but persisted from the cytomegalovirus promoter only with a vector containing a wild-type E4 region. Transience of expression did not correlate with the disappearance of vector DNA, suggesting that promoter down-regulation may be involved. Coinfection studies indicate an E4 product(s) could be supplied in trans to allow persistent expression from the cytomegalovirus promoter. In summary, the choice of promoter is important for achieving persistence of expression; in addition, some promoters are highly influenced by the context of the vector backbone.  相似文献   

17.
18.
Regulation of the cyclin D3 promoter by E2F1   总被引:3,自引:0,他引:3  
We have previously demonstrated that ectopic expression of E2F1 is sufficient to drive quiescent cells into S phase and that E2F1 expression can contribute to oncogenic transformation. Key target genes in this process include master regulators of the cell cycle, such as cyclin E, which regulates G(1) progression, and cyclin A, which is required for the initiation of DNA synthesis. In the present work, we present novel evidence that a second G(1) cyclin, cyclin D3, is also potently activated by E2F1. First, an estrogen receptor-E2F1 fusion protein (ER-E2F1) potently activates the endogenous cyclin D3 mRNA upon treatment with 4-hydroxytamoxifen, which induces nuclear accumulation of the otherwise cytosolic fusion protein. Furthermore, trans-activation of cyclin D3 by ER-E2F1 occurs even in the presence of the protein synthesis inhibitor cycloheximide and thus appears direct. Second, all of the growth-stimulatory members of the E2F family (E2F1, -2, and -3A) potently activate a cyclin D3 promoter reporter, whereas growth-restraining members of the family (E2F4, -5, and -6) have little effect. Third, recombinant E2F1 binds with high affinity to the cyclin D3 promoter in vitro. Fourth, chromatin immunoprecipitation assays demonstrate that endogenous E2F1 is associated with the cyclin D3 promoter in vivo. Finally, mapping experiments localize the essential E2F regulatory element of the cyclin D3 promoter to a noncanonical E2F site in the promoter between nucleotides -143 and -135 relative to the initiating methionine codon. We conclude that in addition to cyclins E and A, E2F family members can also activate one member of the D-type cyclins, further contributing to the ability of the stimulatory E2F family members to drive cellular proliferation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号