首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics of mismatch negativity elicited by dichotic stimulation were examined using deviant stimuli simulating movement of fused auditory images towards the standard stimuli or in the reverse direction. The effect of stationary deviants localized at 90 degrees in respect to standards was also measured. The standard stimuli were localized near either of ears or along the head midline. The spatial locations were produced by introducing interaural time differences into the click trains. All deviant stimuli evoked the mismatch negativity. The deviants moving from standards seem to evoke the lowest mismatch negativity with the longest latency at all azimuthal locations of standard stimuli. Besides, the deviant shift from standards proved to be the only direction at which the characteristics of mismatch negativity depended upon the standard's azimuth. It is seems that the discrimination of interaural time delay is essentially dependent on the pattern of interaural delay changes at the moment when the deviant occurs.  相似文献   

2.
The work investigated event-related potentials, mismatch negativity (MMN), and P3a component under dichotic stimulation with deviant stimuli simulating abrupt or smooth displacement of auditory images to the left or to the right from the head midline by means of interaural time delay introduced into the deviant stimuli. Repetitive standard stimuli were localized near the head midline. All deviant stimuli elicited mismatch negativity and P3a component. It was shown the MMN for smooth deviant motion was lower than that for the abrupt deviant displacement. MMN amplitude for both deviant types obviously depended on interaural time delay, which confirms that MMN might be considered as a measure of the auditory system spatial discriminative ability. The P3a component demonstrated the same amplitude dependences as the MMN. The results obtained are discussed in respect to manifestation of the processes underlying the auditory motion detection in the event-related potentials.  相似文献   

3.
The objective and subjective indexes of sound stimulus discrimination have been studied in order to get insight into individual stages of signal processing in the human brain. The experiment employed two methods: electrophysiological (mismatch negativity or MMN recording) and psychophysical (two-alternative forced choice). Two types of spatial sound stimuli simulated gradual and abrupt sound motion from the head midline. The subjective discrimination between the gradual and abrupt motions was estimated as a function of the stimulus trajectory length. MMN as an objective index of spatial discrimination has been obtained in response to the subthreshold and the suprathreshold levels of psychophysical discrimination. An increase in the angular displacement of the moving stimuli resulted in an increase in both the MMN amplitude and the subjective discrimination, although their correlation remained below the significance level. The results obtained are discussed from the point of view of preconscious perception of auditory spatial information.  相似文献   

4.
During localization of a moving sound source, a shift of the perceived position relative to the actual one of the starting point is an expression of the perception of sluggishness of the auditory system. In this study, the human ability to localize starting points during a gradual or abrupt movement of fused auditory images (FAIs) was compared with the ability to localize the position of a stationary sound image. Sound images moved from the midline of the head in the direction of each of the ears. The subject’s responses were recorded using a graphics table. There was a tendency to shift the starting point of the trajectory in the direction of the movement. This tendency was stronger for gradual rather than for abrupt FAI movement and for shorter stimuli (100 ms) than for long ones (200 ms). The value of the starting point’s displacement depended on the final interaural time delay. The results obtained are discussed in terms of the “snapshots” and “movement detector” theories, as well as in terms of the sluggish and anticipatory ability of auditory perception.  相似文献   

5.
Perception of signals simulating directional movement of a sound source was studied in two groups of patients with cortical temporal lobe epilepsy and epileptic activity foci in the right or left temporal area of the cortex. On dichotic stimulation, the character and length of the trajectories of subjective auditory images (SAIs) were determined as dependent on the direction of SAI movement and the initial interaural delay (700, 400, and 200 s). For any delay or direction examined, SAI trajectories were shorter in the patients of both groups than in healthy subjects. Regardless of the side of an epileptic focus, the shortest trajectories were detected in the hemisphere where SAI movement ended, especially at an interaural delay of 200 s. The narrowest subjective acoustic field was observed in patients with epileptic foci in the right temporal cortex. Possible mechanisms of the changes in spatial hearing are discussed. The changes in SAI perception are assumed to result from distorted binaural interactions, which manifest themselves in functional asymmetry of the two auditory centers and may be caused by a convulsive activity focus present in one temporal lobe.  相似文献   

6.
Mismatch negativity has been studied under the conditions of dichotic stimulation by deviant stimuli that either changed their azimuth from zero to 4.5°, 13.5°, and 22.5° or moved with small velocities from the head midline to one of the ears. The reference stimuli were located along the head midline. Our experiments have shown that both a discontinuous increase in the azimuth and an increase in the velocity of moving stimuli are accompanied by an increase in the amplitude of mismatch negativity. This process is more pronounced in the cases of (1) an instantaneous change in the deviant azimuth compared to its movement, (2) a longer duration of the deviant sound, (3) action of the deviant in the right hemisphere, and (4) the frontal derivation. The correlations of changes in the mismatch negativity with psychophysical data on the resolution of the human auditory system are considered.  相似文献   

7.
The work presents experimental data on certain changes in electrical responses of the auditory system's midbrain centre in a contraphasic binaural presentation of sound impulse series. Neuronal cortical activity is selective in respect to dynamic interaural changes of signals' phasic spectre which may serve as a basis for the mechanisms of localising a moving source of sound. Human auditory evoked potentials reveal a manifestation of memorizing the auditory image movement direction as shown by appearance of stimuli deviant from standard mismatch negativity.  相似文献   

8.
The review presents the data concerning auditory event-related potentials and their "mismatch negativity" component under conditions of stationary and moving sound source localization. Both free-field and dichotic experimental conditions are considered. The interhemispheric asymmetry of the brain responses elicited by the sound sources of various spatial properties is also discussed.  相似文献   

9.
The ability to discriminate moving sounds sources with different dynamic properties was studied in humans. Mismatch negativity was studied in an experiment on dichotic stimulation, with deviant stimuli simulating the instantaneous movement of the auditory image to the right or left of the head midline in the horizontal plane. Standard stimuli simulated continuous movement of the sound source to the right or to the left to the same angular distances. It was also established that both deviant stimuli caused mismatch negativity, its parameters being independent on the direction of sound movement. Psychophysical testing of the same group of subjects showed that discrimination between the stimuli was below the psychophysical threshold. The results obtained are discussed from the point of view of current theories of moving sound localization. The correlation between the objective and subjective levels of discrimination of moving auditory images are discussed.  相似文献   

10.
The ability to localize endpoints of sound image trajectories was studied in comparison with stationary sound image positions. Sound images moved either gradually or abruptly to the left or right from the head midline. Different types of sound image movement were simulated by manipulating the interaural time delay. Subjects were asked to estimate the position of the virtual sound source, using the graphic tablet. It was revealed that the perceived endpoints of the moving sound image trajectories, like stationary stimulus positions, depended on the interaural time delay. The perceived endpoints of the moving sound images simulated by stimuli with the final interaural time delay lower than 200 micros were displaced further from the head midline as compared to stationary stimuli of the same interaural time delays. This forward displacement of the perceived position of the moving target can be considered as "representational momentum" and can be explained by mental extrapolation of the dynamic information, which is necessary for successive sensorimotor coordination. For interaural time delays above 400 micros, final positions of gradually and abruptly moving sound sources were closer to the head midline than corresponding stationary sound image position. When comparing the results of both duration conditions, it was shown that in case of longer stimuli the endpoints of gradually moving sound images were lateralized further from the head midline for interaural time delays above 400 micros.  相似文献   

11.
The perception of moving sound stimuli that imitate directional sound source movement was studied in healthy subjects and in patients with temporal lobe lesions, as well as in a group of patients with simultaneous lesions of the temporal cortex and hippocampus. Under the conditions of dichotic stimulation of patients with the rightor left-side foci of convulsive activity, the nature and length of the trajectories of the emerging subjective sound images (SSI) were estimated depending on the direction of movement and interaural time difference (700, 400, 200 μs). The audiograms of all patients did not differ from those of healthy subjects, suggesting that the auditory sensitivity of patients remained unimpaired. However, in the patients, the trajectories were shorter than the trajectories in healthy subjects at all the values of the initial time delay and at all the directions of SSI movements. In patients with the cortical temporal epilepsy, changes of the subjective sound field were the most significant in the case of the right-side localization of foci of the convulsive activity. In patients with simultaneous lesions of the temporal cortex and hippocampus, the averaged trajectories of SSI movement differed significantly from those in the group of healthy subjects (p < 0.01) and in patients with a relatively isolated lesion of the temporal cortex (p < 0.05); these trajectories were independent of the initial delay. The mediobasal structures of the temporal lobe that are involved in the epileptic process proved to play a significant role in the perception and estimation of the moving sound stimuli, although they do not belong to the auditory system proper. The possible mechanisms underlying disorders in patients with temporal epilepsy are discussed.  相似文献   

12.
Bi-coordinate sound localization by the barn owl   总被引:6,自引:3,他引:3  
1. Binaurally time-shifted and intensity-unbalanced noise, delivered through earphones, induced owls to respond with a head-orienting behavior similar to that which occurs to free field auditory stimuli. 2. Owls derived the azimuthal and elevational coordinates of a sound from a combination of interaural time difference (ITD) and interaural intensity difference (IID). 3. IID and ITD each contained information about the azimuth and elevation of the signal. Thus, IID and ITD formed a coordinate system in which the axes were non-orthogonal. 4. ITD was a strong determinant of azimuth, and IID was a strong determinant of elevation, of elicited head turn.  相似文献   

13.
Summary The physical measurements reported here test whether the European starling (Sturnus vulgaris) evaluates the azimuth direction of a sound source with a peripheral auditory system composed of two acoustically coupled pressure-difference receivers (1) or of two decoupled pressure receivers (2).A directional pattern of sound intensity in the freefield was measured at the entrance of the auditory meatus using a probe microphone, and at the tympanum using laser vibrometry. The maximum differences in the soundpressure level measured with the microphone between various speaker positions and the frontal speaker position were 2.4 dB at 1 and 2 kHz, 7.3 dB at 4 kHz, 9.2 dB at 6 kHz, and 10.9 dB at 8 kHz. The directional amplitude pattern measured by laser vibrometry did not differ from that measured with the microphone. Neither did the directional pattern of travel times to the ear. Measurements of the amplitude and phase transfer function of the starling's interaural pathway using a closed sound system were in accord with the results of the free-field measurements.In conclusion, although some sound transmission via the interaural canal occurred, the present experiments support the hypothesis 2 above that the starling's peripheral auditory system is best described as consisting of two functionally decoupled pressure receivers.Abbreviations CM cochlear microphonics - ITD interaural time difference - IID interaural intensity difference - MRA minimum resolvable angle - dB SPL sound-pressure level (re 0.00002 Pa)  相似文献   

14.
The characteristics of a subjective sound field formed under conditions of dichotic stimulation were studied in healthy subjects (six females and seven males) with normal auditory sensitivity upon movement of a sound image (SI) in different directions. The character and the trajectory values of the emerging subjective sound image (SSI) were determined depending on the direction of its motion and the initial interaural delay (700, 400, and 200 s). Certain differences in the assessment of the parameters of moving sound images between the groups of male and female subjects were revealed. In female subjects, the averaged trajectory values in the right and left hemispheres were the same when the SSI moved in both directions and shortened uniformly with a decrease in the initial interaural delay. With a 700-s delay, the trajectory values of the male subjects for all directions of motion of the SSI were the same as those of female subjects. With initial 400- and 200-s delays, the trajectory values were significantly greater in the group of male subjects if a SI moved from the right or left ear to the median line of the head. With the method used, no interhemispheric asymmetry was revealed in the process of lateralization of moving sound images, which, under certain conditions, may be of importance for increasing the accuracy of localization of sound sources in the environment.  相似文献   

15.
Long latency auditory evoked potentials (AEPs), chiefly consisting of a negative peak at about 150 msec and a positivity at 250 msec, were recorded at the beginning and end of periods during which the interaural time difference of binaural noise was switched between 0.0 and 0.8 msec at a fast rate (ISI = 50 or 25 msec) or the frequency of continuous binaural clicks was switched between 167 and 200 Hz every 80, 50 or 25 msec. In the latter case the offset responses occurred later than onset by a mean of 89, 47 and 27 msec respectively, suggesting they were probably generated at the moment the next switch was expected but failed to occur.The offset responses must be non-specific with respect to the interaural delay or the frequency of clicks, since neurones which respond to particular delays or frequencies and are made refractory by a rapid rate of stimulation should not suddenly become less so at the last in a series of identical stimuli, or be activated by the absence of a further event. It is proposed that the potentials are due to a higher order of neurone which automatically responds to the occurrence of a “mismatch” between the immediate sound and an image of that which was previously present, encoded in a short-term sensory store. In addition to frequency content and interaural delay, the image must contain information about the temporal modulation pattern of the sound over the previous few seconds.  相似文献   

16.
Amplitude changes of inferior colliculus evoked potentials (EPs) in anaesthetized adult cats were studied under presentation of acoustic stimuli simulating both azimuth-moving and stationary sound source. The movement was simulated with gradual changes of interaural time delay between binaurally presented click trains. It was shown that the amplitude of EPs elicited by "moving" signals depended on the velocity of movement. Amplitude differences between EPs to "moving" and stationary stimuli were observed under motion velocities up to 320 deg./s. The greatest response amplitudes in different experiments took place under velocities within the range of 67-320 deg./s with most of them recorded under velocities of 170 and 125 deg./s. Amplitude of the responses to lateral-medial movement with any velocity were always greater than those to opposite direction of movement with the same velocity.  相似文献   

17.
Binaural disparity cues available to the barn owl for sound localization   总被引:3,自引:2,他引:1  
1. Bilateral recording of cochlear potentials was used to measure the variations in interaural time differences (ITDs) and interaural intensity differences (IIDs) as a free-field auditory stimulus was moved to different positions around a barn owl's head. 2. ITD varied smoothly with stimulus azimuth across a broad frequency range. 3. ITD varied minimally with stimulus elevation, except at extreme angles from the horizontal. 4. IID varied with both stimulus elevation and stimulus azimuth. Lower frequencies were more sensitive to variations in azimuth, whereas higher frequencies were more sensitive to variations in elevation. 5. The loci of spatial coordinates that form iso-IID contours and iso-ITD contours form a non-orthogonal grid that relates binaural disparity cues to sound location.  相似文献   

18.
EP series from the cat's inferior colliculus were recorded following binaural stimulation with click series imitating sound source movement due to variation of the interaural time delay (and thus evoking in man the sensation of the moving fused auditory image, FI). The "movement effect" was evaluated as the change in the EP amplitude during the series. The movement effect itself as well as its predominance under conditions of the ipsilateral FI movement as compared to those of the contralateral movement, proved to be connected with greater effectiveness of the contralateral stimulation relative the ipsilateral one.  相似文献   

19.
SYNOPSIS. The detection of interaural time differences underliesazimuthal sound localization in the barn owl. Sensitivity tothese time differences arises in the brainstem nucleus laminaris.Auditory information reaches the nucleus laminaris via bilateralprojections from the cochlear nucleus magnocellularis. The magnocellularinputs to the nucleus laminaris act as delay lines to createmaps of interaural time differences. These delay lines are tappedby postsynaptic coincidence detectors that encode interauraltime differences. The entire circuit, from the auditory nerveto the nucleus magnocellularis to the nucleus laminaris, isspecialized for the encoding and preservation of temporal information.A mathematical model of this circuit (Grun et al., 1990) providesuseful predictions.  相似文献   

20.
To localize the neural generators of the musically elicited mismatch negativity with high temporal resolution we conducted a beamformer analysis (Synthetic Aperture Magnetometry, SAM) on magnetoencephalography (MEG) data from a previous musical mismatch study. The stimuli consisted of a six-tone melodic sequence comprising broken chords in C- and G-major. The musical sequence was presented within an oddball paradigm in which the last tone was lowered occasionally (20%) by a minor third. The beamforming analysis revealed significant right hemispheric neural activation in the superior temporal (STC), inferior frontal (IFC), superior frontal (SFC) and orbitofrontal (OFC) cortices within a time window of 100–200 ms after the occurrence of a deviant tone. IFC and SFC activation was also observed in the left hemisphere. The pronounced early right inferior frontal activation of the auditory mismatch negativity has not been shown in MEG studies so far. The activation in STC and IFC is consistent with earlier electroencephalography (EEG), optical imaging and functional magnetic resonance imaging (fMRI) studies that reveal the auditory and inferior frontal cortices as main generators of the auditory MMN. The observed right hemispheric IFC is also in line with some previous music studies showing similar activation patterns after harmonic syntactic violations. The results demonstrate that a deviant tone within a musical sequence recruits immediately a distributed neural network in frontal and prefrontal areas suggesting that top-down processes are involved when expectation violation occurs within well-known stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号