首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Net uptakes of K+ and NO3 were monitored simultaneously and continuously for two barley (Hordeum vulgare) cultivars, Prato and Olli. The cultivars had similar rates of net K+ and NO3 uptake in the absence of NH4+ or Cl. Long-term exposure (over 6 hours) to media which contained equimolar mixtures of NH4+, K+, Cl, or NO3 affected the cultivars very differently: (a) the presence of NH4+ as NH4Cl stimulated net NO3 uptake in Prato barley but inhibited net NO3 uptake in Olli barley; (b) Cl inhibited net NO3 uptake in Prato but had little effect in Olli; and (c) NH4+ as (NH4)2SO4 inhibited net K+ uptake in Prato but had little effect in Olli. Moreover, the immediate response to the addition of an ion often varied significantly from the long-term response; for example, the addition of Cl initially inhibited net K+ uptake in Olli barley but, after a 4 hour exposure, it was stimulatory. For both cultivars, net NH4+ and Cl uptake did not change significantly with time after these ions were added to the nutrient medium. These data indicate that, even within one species, there is a high degree of genotypic variation in the control of nutrient absorption.  相似文献   

2.
1. The influence of cations on the active transport into cells of rat-brain-cortex slices of l-histidine, an amino acid that is not metabolized by this tissue, has been studied. 2. Like other amino acids, l-histidine accumulated in the cells in the presence of glucose in concentrations up to over double that in the incubation medium. 3. The active transport of l-histidine was highest in a medium containing Ca2+ (3mm). The addition of K+ (27mm) led to a marked decrease in the intracellular concentration of l-histidine, though the oxygen uptake of the slices was higher. 4. The active l-histidine transport was inhibited by NH4+. The inhibitory effect increased with the NH4+ concentration, being about 25% at 8mm, 65% at 20mm, and 90% at 27 and 50mm. The oxygen uptake of the brain slices was depressed by only 25% by the highest NH4+ concentration used, and less by lower concentrations.  相似文献   

3.
Summary Following uptake by rape plants, the nitrate concentration decreased near the root surface. The gradient up to 4 mm from the root was greater when the initial concentration used was higher. In a similar way to exchangeable K+, the concentration of exchangeable NH 4 + in the soil decreased at the soil-root interface.Native, non-exchangeable NH4/+ was not taken up by roots, so that its concentration in the soil close to the root remained unchanged. In contrast, recently fixed non-ecchangeable NH 4 + originating from fertilizer was absorbed by plants and almost completely extracted from the soil near the roots.  相似文献   

4.
We present the first characterization of K+ optimization of N uptake and metabolism in an NH4+‐tolerant species, tropical lowland rice (cv. IR‐72). 13N radiotracing showed that increased K+ supply reduces futile NH4+ cycling at the plasma membrane, diminishing the excessive rates of both unidirectional influx and efflux. Pharmacological testing showed that low‐affinity NH4+ influx may be mediated by both K+ and non‐selective cation channels. Suppression of NH4+ influx by K+ occurred within minutes of increasing K+ supply. Increased K+ reduced free [NH4+] in roots and shoots by 50–75%. Plant biomass was maximized on 10 mm NH4+ and 5 mm K+, with growth 160% higher than 10 mm NO3‐grown plants, and 220% higher than plants grown at 10 mm NH4+ and 0.1 mm K+. Unlike in NH4+‐sensitive barley, growth optimization was not attributed to a reduced energy cost of futile NH4+ cycling at the plasma membrane. Activities of the key enzymes glutamine synthetase and phosphoenolpyruvate carboxylase (PEPC) were strongly stimulated by elevated K+, mirroring plant growth and protein content. Improved plant performance through optimization of K+ and NH4+ is likely to be of substantial agronomic significance in the world's foremost crop species.  相似文献   

5.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

6.
Effects of pH on ammonium uptake by Typha latifolia L.   总被引:5,自引:0,他引:5  
The effects of solution pH on NH4+ uptake kinetics and net H+ extrusion by Typha latifolia L. were studied during short-term (days) and long-term (weeks) exposure to pH in the range of pH 3.5–8.0. The NH4+ uptake kinetics were estimated from depletion curves using a modified Michaelis-Menten model. T. latifolia was able to grow in solution culture with NH4+ as the sole N source and to withstand a low medium pH for short periods (days). With prolonged exposure (weeks) to pH 3.5, however, the plants showed severe symptoms of stress and stopped growing. The solution pH affected NH4+ uptake kinetics. The affinity for NH4+, as quantified by the half saturation constant (K1/2) and Cmin (the NH4+ concentration at which uptake ceases), decreased with pH. K1/2 was increased from 7.1 to 19.2 mmol m?3 and Cmin from 2.0 to 5.7 mmol m?3 by lowering the pH in steps from 8.0 to 3.5. Vmax was, however, largely unaffected by pH (~22 μmol h?1 g?1 root dry weight). Under prolonged exposure to constant pH, growth rates were highest at PH 5.0 and 6.5. At pH 8.0 growth was slightly depressed and at pH 3.5 growth completely stopped. NH4+ uptake kinetics were similar at pH 5.0, 6.5 and 8.0 whereas at pH 3.5 NH4+ uptake almost completely stopped. The ratio between net H+ extrusion and NH4+ uptake decreased significantly at low pH. The adverse effects of low pH on NH4+ uptake kinetics are probably a consequence of a reduced H+-ATPase activity and/or an increased re-entry of H+ at low pH, and the associated decrease in the electrochemical gradient across the plasma membranes of the root cells.  相似文献   

7.
The stimulatory effect of ammonium and potassium ions upon glycolysis, as catalyzed by an extract prepared from an acetone powder of rat brain, has been investigated. The effect is most pronounced when small amounts of adenosine triphosphate (ATP) are employed and it becomes progressively less apparent as the ATP concentration is increased.Unlike the extracts and homogenates obtained from fresh brain tissue (1,2), glycolysis by the acetone extracts is not inhibited significantly by sodium ion. This is apparently due to the low apyrase content of these extracts. In addition the experiments indicate that the NH4+ and K+ have direct stimulatory effects which are not due to antagonism between Na+ and NH4+ or K+. This suggestion gains credence by the observation that the same concentration of NH4+ is required for stimulation whether or not the concentration of Na+ is reduced through substitution of trishydroxymethylaminomethane buffer for the NaHCO3 buffer. Apparently NH4+ and K+ serve to maintain ATP in these systems by initiating or accelerating phosphorylation reactions. In so doing, they prevent the formation of adenylic acid which is fairly rapidly dephosphorylated in those systems by a 5-nucleotidase.  相似文献   

8.
A major aim of this investigation was to determine whether, in steady-state ascites cells, Cl? transport can be partitioned into a furosemide-sensitive cotransport with K+ and a separate 4,4′-isothiocyanostilbene-2,2′-disulfonic acid (DIDS) sensitive self-exchange. Both Cl? and K+ fluxes were studied. The furosemide- and Cl? sensitive K+ fluxes were equivalent, both in normal ionic media and when the external K+ concentration, [K+]o, was varied from 4 to 30 mM. The stoichiometry of the furosemide-sensitive Cl? and K+ fluxes was 2 Cl?: 1 K+ at 0.1 and 0.5 mM drug levels but increased to 3 Cl? : 1 K+ at 1.0 mM furosemide. DIDS at 0.1 mM had no effect on the K+ exchange rate but inhibited Cl? exchange by 39% ± 2 (S.E.). The effects of DIDS and 0.5 mM furosemide on Cl? transport were additive but 1.0 mM furosemide and DIDS had overlapping inhibitory actions. Thus furosemide acts on components of K+ and Cl? transport which are linked to each other, but the drug also inhibits an additional DIDS-sensitive Cl? pathway, when present at higher concentrations. The dependence of the furosemide-sensitive K+ and Cl? transport on [K+]o was also studied; both fluxes fell as the [K+]o increased. The latter results recall those in an earlier study by Hempling (Hempling, H.G. (1962) J. Cell. Comp. Physiol. 60, 181–198).  相似文献   

9.
1. The incorporation of l-[1-14C]leucine into the proteins of liver slices and into the serum albumin and lipoproteins transported by these slices was investigated. 2. Transport rates were found to be dependent on the K+ content of the slices. 3. The effect of K+ on transport of serum albumin and of serum lipoprotein can be separated from any effect on synthesis by altering K+ concentrations after inhibition of protein synthesis by cycloheximide or puromycin. 4. The effect of low K+ concentrations is reversible. 5. There is linear relationship between the K+ content of the slices and the transport of protein. A simple method is described for maintaining various steady concentrations of K+ in the liver slices. 6. K+ may be replaced by Rb+. Cs+ is partly effective, but NH4+ and Li+ are no more effective than Na+. 7. We found evidence that K+ content rather than the flux rates of K+ or Na+ is important in this effect. 8. These results are probably important in ethionine and carbon tetrachloride poisoning in the rat, and may be significant in liver transplantation.  相似文献   

10.
Poplar plants are cultivated as woody crops, which are often fertilized by addition of ammonium (NH4 +) and/or nitrate (NO3 ?) to improve yields. However, little is known about net NH4 +/NO3 ? fluxes and their relation with H+ fluxes in poplar roots. In this study, net NH4 +/NO3 ? fluxes in association with H+ fluxes were measured non-invasively using scanning ion-selective electrode technique in fine roots of Populus popularis. Spatial variability of NH4 + and NO3 ? fluxes was found along root tips of P. popularis. The maximal net uptake of NH4 + and NO3 ? occurred, respectively, at 10 and 15 mm from poplar root tips. Net NH4 + uptake was induced by ca. 48 % with provision of NO3 ? together, but net NO3 ? uptake was inhibited by ca. 39 % with the presence of NH4 + in poplar roots. Furthermore, inactivation of plasma membrane (PM) H+-ATPases by orthovanadate markedly inhibited net NH4 +/NO3 ? uptake and even led to net NH4 + release with NO3 ? co-provision. Linear correlations were observed between net NH4 +/NO3 ? and H+ fluxes in poplar roots except that no correlation was found between net NH4 + and H+ fluxes in roots exposed to NH4Cl and 0 mM vanadate. These results indicate that root tips play a key role in NH4 +/NO3 ? uptake and that net NH4 +/NO3 ? fluxes and the interaction of net fluxes of both ions are tightly associated with H+ fluxes in poplar roots.  相似文献   

11.
The biomass concentration extant in potassiumlimited cultures of either Klebsiella pneumoniae or Bacillus stearothermophilus (when growing at a fixed temperature and dilution rate in a glucose/ammonium salts medium) increased progressively as the medium pH value was raised step-wise from 7.0 to 8.5. Because the macromolecular composition of the organisms did not vary significantly, this increase in biomass could not be attributed to an accumulation of storage-type polymers but appeared to reflect a pH-dependent decrease in the cells' minimum K+ requirement. Significantly, this effect of pH was not eviden with cultures in which no ammonium salts were present and in which either glutamate or nitrate was added as the sole nitrogen source; however, it was again manifest when various concentrations of NH4Cl were added to the glutamate-containing medium. This suggested a functional replacement of K+ by NH 4 + , a proposition consistent with the close similarity of the ionic radii of the potassium ion (1.33 Å) and the ammonium ion (1.43 Å). At pH 8.0, and with a medium containing both glutamate (30 mM) and NH4Cl (100 mM), cultures of B. stearothermophilus would grow without added potassium at a maximum rate of 0.7 h-1. Under these conditions the cells contained maximally 0.1% (w/w) potassium (derived from contaminating amounts of this element in the medium constituents), a value which should be compared with one of 1.4% (w/w) for cells growing in a potassiumlimited medium containing initially 0.5 mM K+. Qualitatively similar findings were made with cultures of K. pneumoniae; and whereas one may not conclude that NH 4 + can totally replace K+ in the growth of these bacteria, it can clearly do so very extensively.  相似文献   

12.
Abstract Radioisotope equilibration techniques have been used to determine the intracellular concentration of K+, Na+ and Cl?, together with the unidirectional ion fluxes across the plasmalemma of Porphyra purpurea. Influx and efflux of 42K+, 24Na+ and 36C1? are biphasic, the rapid, initial uptake and loss of tracer from individual thalli being attributable to desorption from extracellular regions. Cellular fluxes are slower and monophasic, cells discriminating in favour of K+ and Cl? and against Na+. A comparison between the equilibrium potential of individual ion species and the measured membrane potential demonstrates that there is an active component of K+ and Cl? influx and Na+ efflux. ‘Active’ uptake and ‘passive’ loss of K+ and Cl? are reduced when plants are kept in darkness, suggesting that a fraction of the transport of K+ and Cl? may be due to ‘exchange diffusion’ (K+/K+ and Cl?/Cl?antiport).  相似文献   

13.
Acid-base regulation during ammonium assimilation in Hydrodictyon africanum   总被引:1,自引:1,他引:0  
Abstract The acid-base balance during ammonium (used to mean NH 4+ and/or NH3) assimilation in Hydrodictyon africanum has been measured on cells growing with about 1 mol m?3 ammonium at an external pH of about 6.5. Measurements made included (1) ash alkalinity (corrected for intracellular ammonium) which yields net organic negative charge, (2) the accumulation of organic N in the cells and (3) the change in extracellular H+ (from the pH change and the buffer capacity). These measurements showed that some 0.25 excess organic negative charge (half in the cell wall, half inside the plasmalemma) accumulates per organic N synthesized, while some 1.25H+ accumulate in the medium per organic N synthesized. Granted a permeability (PNH3) of some 10?3 cm s?1, and a finite [NH3] in the cytoplasm of these N-assimilating cells it is likely that most of the ammonium entering these growing cells is as NH 4+. This means that most of the H + appearing in the medium must have originated from inside the cell and have been subjected to active efflux at the plasmalemma: H+ accumulates in the medium equivalent to any NH3 entry by requilibration from exogenous NH 4+. The cell composition (net organic negative charge, organic N content) is very similar in these ammonium-grown cells to that of NO3+grown cells, suggesting that there is no action of a ‘biochemical pH stat’ during longterm assimilation of NO3+in H. africanum. Short-term experiments were carried out at an external pH of 7.2 in which ammonium at various concentrations were supplied to NO3+-grown cells. There was in all cases a rapid influx followed by a slower uptake; at least at the lower concentrations (less than 100 μmol dm?3) the net influx was all attributable to NH4+influx via a uniporter, probably partly short-circuited by a passive NH3 efflux due to intrinsic membrane permeability to NH3. The net ammonium influx was in all cases associated with H+ accumulation in the medium. (1.3-1.7 H + per ammonium taken up); as in the growth experiments, most of the ammonium taken up was assimilated. Determinations of cytoplasmic pH showed either no effect on, or a slight decrease in, pH during ammonium assimilation; the changes that occurred were in the direction expected for actuating a ‘pH-regulating’ change in H+ fluxes.  相似文献   

14.
The monovalent ion transport systems of an immortalized insect cell line (CHE) have been investigated. These cells are unusual in that unlike most vertebrate cells, their normal extracellular environment consists of high potassium and low sodium concentrations. CHE cells maintained high intracellular [K+] through both a furosemide-inhibitable and a vanadate-inhibitable transport system. Intracellular exchangeable [Na+] was slightly lower than the extracellular [Na+] and was maintained at this level through a vanadate-sensitive transport system. Na+ uptake was also inhibited by furosemide: however, the stoichiometry of furosemide-sensitive Na+ uptake when compared with furosemide-sensitive K+ uptake indicated that these cations are not cotransported. 4,4′-Diisothiocyano-2,2′-disulfonic acid stilbene (DIDS) inhibited Na+, K+, and Cl? uptake. Vanadate and furosemide decreased cytoplasmimic pH, while cytoplasmic pH increased in the presence of DIDS. A model is presented explaining how Na+, K+, Cl?, H+ and HCO3 ? fluxes are regulated in these cells.  相似文献   

15.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

16.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

17.
Pisum arvense plants were subjected to 5 days of nitrogen deprivation. Then, in the conditions that increased or decreased the root glutamine and asparagine pools, the uptake rates of 0.5 mM NH4 + and 0.5 mM K+ were examined. The plants supplied with 1 mM glutamine or asparagine took up ammonium and potassium at rates lower than those for the control plants. The uptake rates of NH4 + and K+ were not affected by 1 mM glutamate. When the plants were pre-treated with 100 μM methionine sulphoximine, an inhibitor of glutamine synthesis, the efflux of NH4 + from roots to ambient solution was enhanced. On the other hand, exposure of plants to methionine sulphoximine led to an increase in potassium uptake rate. The addition of asparagine, glutamine or glutamate into the incubation medium caused a decline in the rate of NH4 + uptake by plasma membrane vesicles isolated from roots of Pisum arvense, whereas on addition of methionine sulphoximine increased ammonium uptake. The results indicate that both NH4 + and K+ uptake appear to be similarly affected by glutamine and asparagine status in root cells. The research was supported by grant of KBN No. 6PO4C 068 08  相似文献   

18.
The mechanisms of action of the known inhibitors of gastric acid secretion such as SCN?, OCN?, NO2?, and NH4+ (M. E. LeFevre, E. J. Gohmann, Jr. and W. S. Rehm, 1964, Amer. J. Physiol.207, 613–618) were investigated using isolated pig gastric microsomal vesicles as a model system. The gastric microsomal vesicles enriched in (H+ + K+)-ATPase have previously been demonstrated to accumulate H+ in exchange for K+. The vesicular accumulation of acridine orange, which is a measure of H+ uptake, shows sigmoidal kinetics in the presence of increasing K+ with a Hill coefficient of 2.27 and a S50 of 19.05 mm. None of those agents affects the microsomal (H+ + K+)-ATPase activity, although they inhibit vesicular H+ transport in a dose-dependent manner; the order of efficacy being NH4+ > SCN? > OCN? > NO2?. The inhibitory effects of NH4+ on vesicular H+ transport appear to be due to neutralization of the transported H+ by freely permeable NH3 generated from the dissociation of NH4+ in the bulk medium. SCN?, OCN?, and NO2? appear to work by a different mechanism. These agents do not act as protonophores. Our data demonstrate that the presence of SCN?, OCN?, and NO2? within the vesicle interior are essential for exerting their inhibitory effects. Furthermore, the inhibitory effects of SCN? and OCN? on vesicular H+ transport could be reversed by an elevation of intravesicular K+. Our data strongly suggest that the effects of SCN?, OCN?, and NO2? are exerted by interfering with a low-affinity K+ site (S50 = 19.05 mm) within the domain of the gastric ATPase complex. This low-affinity K+ site is accessible only from the vesicle interior and appears to be essential for the vectorial transport of H+ by the gastric microsomal (H+ + K+)-ATPase system.  相似文献   

19.
Abstract: Uptake of L-glutamine (2 mM) by rat brain cortex slices against a concentration gradient is markedly inhibited (40%) by branched-chain Lamino acids (1 mM), L-phenylalanine (1 mM), or L-methionine (1 mM); that of L-asparagine (2 mM) is much less affected by these amino acids. Other amino acids investigated have little or no effect on cerebral L-glutamine uptake. The suppressions of L-glutamine uptake by the inhibitory amino acids are apparently blocked by high [K+], which itself has little or no effect on glutamine uptake. This abolition of suppression is partly explained by high [K+] retention of endogenous glutamine; in the absence of Ca2+ such retention disappears. The inhibitory amino acids (1 mM) also enhance the release of endogenous glutamine, exogenous glutamine with which slices have been loaded, or glutamine synthesized in the slices from exogenous glutamate. The enhanced release of endogenous glutamine is diminished by high [K+]. The suppression of glutamine uptake by the branched-chain amino acids is independent of the concentration of glutamine at low concentrations (0.25–0.5 mM), indicating non-competition, but is reduced with high concentration of glutamine. The inhibition by L-phenylalanine is noncompetitive. L-Glutamine (2 mM) exerts no inhibition of the cerebral uptakes of the branched-chain L-amino acids or Lphenylalanine (0.25–2 mM). The inhibitory amino acids are as active in suppressing L-glutamine uptake with immature rat brain slices as with adult, although the uptake, against a gradient, of L-glutamine in the infant rat brain is about one-half that in the adult. They are also just as inhibitory on the concentrative uptake of L-glutamine by a crude synaptosomal preparation derived from rat brain cortex. Such a nerve ending preparation takes up L-glutamine (0.25 mM), against a gradient, at about ninefold the rate at which it is taken up by cortex slices (for equal amounts of protein), and the uptake process is markedly suppressed by high [K+] in contrast to the effects of high [K+] with slices. The possible physiological and pathological consequences of the suppression of glutamine uptake are discussed.  相似文献   

20.
Abstract Effects of temperature on the ionic relations and energy metabolism of Chara corallina were investigated. Measurements were made of the ionic content, tracer ion fluxes, and photosynthetic and dark CO2 fixation in isolated cells, and of O2 exchange in photosynthesis and respiration in isolated shoot apices. The total intracellular concentration of K+, Na+ and Cl? was the same in cells held for 5 days in non-growing medium at 15°C (the growth temperature) as in those held at 25°C or 5°C. The tracer influx in the light of all ions tested (Rb+, Na+, CH3NH3+, Cl? and H2PO4?) was lower at 5°C than at 15°C in experiments in which cells were subjected to 5°C for less than 24 h in toto. The influx at 25°C was greater than that at 15°C for H2PO?4, there was no difference between the two temperatures for Na+, while the influx at 25°C was less than that at 15°C for Cl?, Rb+ and CH3NH3+ For Cl? and H2PO?4 similar results were found in later experiments with cells grown at 20—23°C. Photosynthetic CO2 fixation and O2 evolution, and respiratory O2 uptake, are greater at 25°C, and lower at 5°C, than they are at the growth temperature of 15°C. In longer-term pretreatments at the different temperatures, tracer Cl? influx at 15°C and particularly at 25°C were lower than in short-term experiments, while the influx at 5°C was higher. It was concluded from these experiments, and from previous data on H+ free energy differences across the plasmalemma, that (1) the maintenance of internal ion concentrations involves a close balancing of influx and efflux of K+, Na+ and Cl? at all experimental temperatures; (2) the regulation of the tracer fluxes of the ions is kinetic rather than thermodynamic and (3) that the tracer fluxes at low temperatures are not restricted by the rate at which respiration or photosynthesis can supply energy to them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号