首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship among growth temperature, membrane fatty acid composition, and pressure resistance was examined in Escherichia coli NCTC 8164. The pressure resistance of exponential-phase cells was maximal in cells grown at 10 degrees C and decreased with increasing growth temperatures up to 45 degrees C. By contrast, the pressure resistance of stationary-phase cells was lowest in cells grown at 10 degrees C and increased with increasing growth temperature, reaching a maximum at 30 to 37 degrees C before decreasing at 45 degrees C. The proportion of unsaturated fatty acids in the membrane lipids decreased with increasing growth temperature in both exponential- and stationary-phase cells and correlated closely with the melting point of the phospholipids extracted from whole cells examined by differential scanning calorimetry. Therefore, in exponential-phase cells, pressure resistance increased with greater membrane fluidity, whereas in stationary-phase cells, there was apparently no simple relationship between membrane fluidity and pressure resistance. When exponential-phase or stationary-phase cells were pressure treated at different temperatures, resistance in both cell types increased with increasing temperatures of pressurization (between 10 and 30 degrees C). Based on the above observations, we propose that membrane fluidity affects the pressure resistance of exponential- and stationary-phase cells in a similar way, but it is the dominant factor in exponential-phase cells whereas in stationary-phase cells, its effects are superimposed on a separate but larger effect of the physiological stationary-phase response that is itself temperature dependent.  相似文献   

2.
3.
Polyamines intensify the effect of a heat shock on Escherichia coli M-17 cells. The lethal effect of polyamines rises in the spermidine--spermine series as their concentration and the duration of heat action is increased. The effect of polyamines on the cells subjected to a heat shock is not associated with the activity of amine oxidases and, apparently, does not destabilize the membranes. As was demonstrated using electron microscopy, the cells undergo morphological changes in the presence of polyamines in the course of a heat shock; in particular, electron-dense regions appear in the nucleoid zone, presumably, due to DNA conformational rearrangements during the shock in the presence of polyamines.  相似文献   

4.
5.
A zonal centrifugation technique that can select the smallest newborn cells in an exponentially growing culture of Escherichia coli B/r is described.  相似文献   

6.
In y; Dp(1;3)scJ4, y+M(3)i55Pc2 ssak/mwh ssak stock, somatic y; mwh M+ clones were induced at different developmental stages by 60Co gamma-irradiation (1000 rad; 12,2 rad/sec). Expression of Pc2 (the development of sex-combs on the 2nd and the third leg-pairs) in the non-M clones was similar to that in y; Dp(1;3)scJ4, y+M(3)i55 Pc2ssak/mwh ssak flies, but significantly lower than in Pc2 ssak/+ssak flies. Such non-autonomous Minute effect may be due to the early repression of the Pc prior to the period of clone induction.  相似文献   

7.
8.
Porin OmpC from Escherichia coli was reconstituted in liposomes and its gating kinetics were recorded at high hydrostatic pressure, up to 90 MPa, using a development of the patch clamp technique. The composition of the recording solution influenced the results but generally high hydrostatic pressure favoured channel opening.  相似文献   

9.
Zhang W  Kaback HR 《Biochemistry》2000,39(47):14538-14542
The temperature dependence of lactose active transport, efflux down a concentration gradient, and equilibrium exchange were analyzed in right-side-out membrane vesicles from Escherichia coli containing wild-type lactose permease and mutant Glu325 --> Ala. With respect to uphill transport and efflux down a concentration gradient, both of which involve H(+) symport, Arrhenius plots with wild-type permease exhibit a discontinuity at 18-19 degrees C with a 7-8-fold decrease in activation energy above the phase transition. For equilibrium exchange, which does not involve H(+) symport, the change in activation energy is much less pronounced (2-3-fold) than that observed for active transport or efflux. Strikingly, mutant Glu325 --> Ala, which catalyzes equilibrium exchange as well as wild-type permease but is defective in all translocation reactions that involve net H(+) translocation, exhibits no change whatsoever in activation energy. The findings are consistent with the conclusion that the primary effect of the lipid phase transition is to alter coupling between substrate and H(+) translocation rather than the conformational change(s) responsible for translocation across the membrane.  相似文献   

10.
Although high hydrostatic pressure (HHP) is an interesting parameter to be applied in bioprocessing, its potential is currently limited by the lack of bacterial chassis capable of surviving and maintaining homeostasis under pressure. While several efforts have been made to genetically engineer microorganisms able to grow at sublethal pressures, there is little information for designing backgrounds that survive more extreme pressures. In this investigation, we analyzed the genome of an extreme HHP-resistant mutant of E. coli MG1655 (designated as DVL1), from which we identified four mutations (in the cra, cyaA, aceA and rpoD loci) causally linked to increased HHP resistance. Analysing the functional effect of these mutations we found that the coupled effect of downregulation of cAMP/CRP, Cra and the glyoxylate shunt activity, together with the upregulation of RpoH and RpoS activity, could mechanistically explain the increased HHP resistance of the mutant. Using combinations of three mutations, we could synthetically engineer E. coli strains able to comfortably survive pressures of 600–800 MPa, which could serve as genetic backgrounds for HHP-based biotechnological applications.  相似文献   

11.
12.
Osmotic upshock of E. coli cells in NaCl or sucrose medium resulted in a large decrease in the cytoplasmic volume and the inhibition of growth, of the electron transfer chain and of four different types of sugar transport system: the lactose proton symport, the glucose phosphotransferase system, the binding-protein dependent maltose transport system and the glycerol facilitator. In contrast to NaCl and sucrose, the permeant solute glycerol had no marked effect. These inhibitions could be partially relieved by glycine betaine. Despite these inhibitions, the internal pH, the protonmotive force and the ATP pool were maintained. It is concluded that inhibition of electron transfer and of sugar transport is the consequence of conformational changes caused by the deformation of the membrane. It is also concluded that the arrest of growth observed upon osmotic upshock is not due to energy limitations and that it cannot be explained by the inhibition of carbohydrate transport.  相似文献   

13.
Effect of temperature on the size of Escherichia coli cells.   总被引:1,自引:1,他引:1       下载免费PDF全文
The distributions of cell volumes of steady-state Escherichia coli ML30G cultures at various temperatures were measured. For cultures in a minimal medium, the distributions were indistinguishable at several temperatures between 15 and 30 C; at higher temperatures the cells were slightly smaller, and at lower temperatures they were slightly larger. For cultures in a complex medium, the cells were slightly larger at both high and low temperatures of growth. An abrupt change of temperature within the middle range led to a transient change in the distribution of cell volume, suggesting that the size of dividing cells is well regulated. No synchrony of division was induced by a change in temperature.  相似文献   

14.
Genetic crosses between E. coli Hfr C--donor and E. coli AB 1157--recipient cells sensitive to single target inhibitor glyphosate gave rise to offspring which could tolerate not only minimal inhibitory concentration of this inhibitor but also six-fold increased concentrations. No change in glyphosate target enzyme activity in transconjugants (resulted from recombination occurred at arg G and proAB genome regions, respectively) compared to that of parent strains was observed. If new combinations due to recombination of some genetic factors is responsible for emergence of this resistance the question is raised on the nature of these factors and their role in cell biology.  相似文献   

15.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i). the expression of rpoH, encoding the heat shock-specific sigma factor sigma(32), was also induced by high pressure; (ii). heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii). basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

16.
The RNA polymerase sigma factor, encoded by rpoS gene, controls the expression of a large number of genes in Escherichia coli under stress conditions. The present study investigated the growth characteristics and metabolic pathways of rpoS gene knockout mutant of E. coli growing in LB media under aerobic condition. The analyses were made based on gene expressions obtained by DNA microarray and RT-PCR, enzyme activities and intracellular metabolite concentrations at the exponential and early stationary phases of growth. Although the glucose utilization pattern of the mutant was similar to the parent strain, the mutant failed to utilize acetate throughout the cultivation period. Microarray data indicated that the expression levels of several important genes of acetate metabolism such as acs, aceAB, cysDEK, fadR, etc. were significantly altered in the absence of rpoS gene. Interestingly, there was an increased activity of TCA cycle during the exponential growth phase, which was gradually diminished at the onset of stationary phase. Moreover, rpoS mutation had profound effect on the expression of several other genes of E. coli metabolic pathways that were not described earlier. The changes in the gene expressions, enzyme activities and intracellular metabolite concentrations of the rpoS mutant are discussed in details with reference to the major metabolic pathways of E. coli.  相似文献   

17.
The umuDC gene products, whose expression is induced by DNA-damaging treatments, have been extensively characterized for their role in SOS mutagenesis. We have recently presented evidence that supports a role for the umuDC gene products in the regulation of growth after DNA damage in exponentially growing cells, analogous to a prokaryotic DNA damage checkpoint. Our further characterization of the growth inhibition at 30 degrees C associated with constitutive expression of the umuDC gene products from a multicopy plasmid has shown that the umuDC gene products specifically inhibit the transition from stationary phase to exponential growth at the restrictive temperature of 30 degrees C and that this is correlated with a rapid inhibition of DNA synthesis. These observations led to the finding that physiologically relevant levels of the umuDC gene products, expressed from a single, SOS-regulated chromosomal copy of the operon, modulate the transition to rapid growth in E. coli cells that have experienced DNA damage while in stationary phase. This activity of the umuDC gene products is correlated with an increase in survival after UV irradiation. In a distinction from SOS mutagenesis, uncleaved UmuD together with UmuC is responsible for this activity. The umuDC-dependent increase in resistance in UV-irradiated stationary-phase cells appears to involve, at least in part, counteracting a Fis-dependent activity and thereby regulating the transition to rapid growth in cells that have experienced DNA damage. Thus, the umuDC gene products appear to increase DNA damage tolerance at least partially by regulating growth after DNA damage in both exponentially growing and stationary-phase cells.  相似文献   

18.
19.
The isolated, formaldehyde-fixed nucleoid of E. coli has been analyzed by isopycnic centrifugation in CsCl density gradients. The membrane-free nucleoid bands at a density of 1.69 +/- 0.02 g/cm3. The membrane-associated nucleoid bands at a density of 1.46 +/- 0.02 g/cm3. Both species sediment to equilibrium as nearly monodisperse bands in CsCl, suggesting that the nucleoid components of DNA, RNA and protein are present in relatively constant ratios. These ratios are constant regardless of the position of the nucleoids in the heterogeneous sedimentation profile of a preparative sucrose gradient. The fixed nucleoids remain condensed during isopycnic centrifugation and there is no detectable loss of RNA from the nucleoid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号