首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Norway spruce is one of the economically most important tree species in Central European forestry. However, its high susceptibility to droughts poses a strong challenge to its cultivation under future conditions with likely more frequent and prolonged droughts and shifts in the seasonal climate. To compensate for expected losses of forest areas suitable for the cultivation of spruce, more drought-tolerant species are required. Silver fir and Douglas fir are two potential candidates, which promise lower drought susceptibility and equal or even higher yield when compared to Norway spruce.Using the Black Forest as a regional case study, we assessed the effects of seasonal climate change, including drought stress, on tree-ring width formation of these three economically relevant conifer species over the last 60 years. In addition, we projected potential species-specific growth changes under different climate change scenarios until 2100.Our results suggest that both silver fir and Douglas fir will possibly experience growth increases in a warmer future climate, as predicted under the 4.5 and 8.5 Representative Concentration Pathway (RCP) climate change scenarios, whereas growth of spruce is expected to decline. Moreover, drought susceptibility in silver fir and Douglas fir is lower than in spruce, as shown for past drought events, and their ability to benefit from milder winters and springs could play a major role in their capacity to compensate for drier summers in the near to mid-term future. This study highlights the need to advance our understanding of the processes that drive drought resistance and resilience in tree species to guide management strategies in the face of climate change.  相似文献   

2.
The Lomond Hills of Fife, an isolated upland area rising to over 500 m, provide an opportunity to investigate the effect of altitude on vegetation and climate in an area otherwise dominated by lower-lying land. The West Lomond site contains sediments of the Devensian Late-glacial period; they reveal a well-defined sequence of Bolling-Older Dryas-Allerod-Younger Dryas events, commencing ca. 12 190 radiocarbon years B.P. and a probable Amphi-Atlantic Oscillation between ca. 11 040 and 10 800 B.P. The Holocene record is constrained by low sediment input but does reveal a woodland presence at this altitude, dominated byBetula andCorylus. Size statistics forBetula pollen are presented and the implications of the vegetational and climatic record are discussed. The traditional view of a smooth progress towards more temperate conditions following the Younger Dryas is not supported; between 10 180 and 9120 B.P., three cooler periods are inferred, the earliest of which may belong to a terminal phase of the Younger Dryas. Comparative pollen ‘influx’ data strongly suggest thatQuercus,Ulmus andAlnus were not present locally. As a working hypothesis, it is suggested that the demise of woodland, from ca. 5950 B.P., was a result of exposure. Pollen indicative of human impact was probably derived from areas of lowland agricultural activity from ca. 5330 B.P. onwards.  相似文献   

3.
In some continental and island sites in the western Mediterranean basin, the Holocene vegetation and climate dynamics seem to show the same patterns in time and space. Nevertheless, different synchronous scenarios have been proposed from other south European, North African and Near Eastern pollen records from around the Mediterranean basin. Striking similarities and synchronisms have been found between Sicily and the Balearic Islands. These islands, although under different bioclimatic influences, show similarities in the main trends of vegetation and climate dynamics during the Post-glacial. Lago di Pergusa is the only natural inland lake in Sicily and because of its geographical location, has a good potential sensitivity to the climatic changes of the Mediterranean basin. Likewise, coastal sediments from Minorca and Majorca, the Balearic Islands, have similar peculiarities. The present-day environmental situation, now that most of the natural vegetation in these islands has disappeared, has been brought about either by a climatic trend towards increasing aridity or an increase in human activities. It seems clear that prehistoric human people alone could not have caused all the environmental changes recorded in the last millennia in both places.  相似文献   

4.
5.
Assessments of climate change impacts on species are needed for anticipating potential biodiversity losses. Climate change impacts on species are often simulated with climate envelope models, but most climate envelope models do not account for dispersal limitations. Most studies only consider two extreme (and unrealistic) dispersal options: no dispersal versus full dispersal. This study attempts to include dispersal limitation into the calculation of climate change sensitivity scores for a range of vertebrate and plant species. We calculate climate change sensitivity scores -expressed as an index- by using the 'spatial turnover' of a species under climate change, defined as the projected difference between current and future area occupied by a species within a region, and include a dispersal factor to account for dispersal limitations. We calculate climate sensitivity scores with three dispersal factors: d0 (no dispersal), d1 (full dispersal) and with an estimated value of d calculated directly from species specific dispersal data and literature estimates (de). We compared climate sensitivity scores across species groups and European bio-geographical regions in order to determine whether explicitly accounting for dispersal limitations causes significant differences in sensitivity for climate change. Our results show that the climate sensitivity scores calculated with de differ slightly from d0 (no dispersal), but differ significantly from d1 (full dispersal) for the less mobile species groups (amphibian, reptiles, plants). This indicates that assuming full dispersal significantly overestimates the future distribution in Europe under climate change for these species, whereas assuming no dispersal may slightly underestimates this. However, this conclusion could not be drawn for the more mobile birds and mammas: climate sensitivity scores calculated with de are approximately intermediate of those calculated with d0 (no dispersal) and d1 (full dispersal). This indicates that assuming either no or full dispersal results in poor estimates of the future distribution of these species in Europe under climate change, and that dispersal capacity should therefore always be considered when assessing climate change impacts on these species. Disaggregating climate sensitivity scores per European bio-geographical regions reveals that regional climate sensitivity scores are similar to the European level.  相似文献   

6.
In this paper we present and discuss palynological results based on a composite profile from Birkat Ram crater lake (Northern Golan, Near East) in order to reconstruct the environmental history, including human impact, of the last 6500 years. Furthermore we apply a newly-developed botanical climatological transfer function to reconstruct climate variations in the northern Golan Heights based on this pollen data-set. The Birkat Ram record is strongly influenced by anthropogenic indicators in the pollen diagram with high quantities during the Chalcolithic period/Early Bronze Age, during the Hellenistic-Roman-Byzantine periods, during the Crusader period and finally during modern times. The palaeoclimate reconstruction method used is based on a Bayesian approach and is robust in avoiding the influence of these strong anthropogenic signals on the reconstruction results. The area has always had Mediterranean climate conditions and no distinctive climate changes can be identified during the past 6500 years. Because of the orography of the Mt. Hermon region the particular geographical position of the northern Golan Heights is obviously capable of buffering large-scale fluctuations in precipitation, which have otherwise been documented for several regions in the Near East. Electronic Supplementary Material Supplementary material is available for this article at An erratum to this article can be found at  相似文献   

7.
The palynostratigraphy of two sediment cores from Soppensee, Central Switzerland (596 m asl) was correlated with nine regional pollen assemblage zones defined for the Swiss Plateau. This biostratigraphy shows that the sedimentary record of Soppensee includes the last 15 000 years, i.e. the entire Late-glacial and Holocene environmental history. The vegetation history of the Soppensee catchment was inferred by pollen and plant-macrofossil analyses on three different cores taken in the deepest part of the lake basin (27 m). On the basis of a high-resolution varve and calibrated radiocarbonchronology it was possible to estimate pollen accumulation rates, which together with the pollen percentage data, formed the basis for the interpretation of the past vegetation dynamics. The basal sediment dates back to the last glacial. After reforestation with juniper and birch at ca. 12 700 B.P., the vegetation changed at around 12 000 B.P. to a pine-birch woodland and at the onset of the Holocene to a mixed deciduous forest. At ca. 7000 B.P., fir expanded and dominated the vegetation with beech becoming predominant at ca. 50014C-years later until sometime during the Iron Age. Large-scale deforestation, especially during the Middle Ages, altered the vegetation cover drastically. During the Late-glacial period two distinct regressive phases in vegetation development are demonstrated, namely, the Aegelsee oscillation (equivalent to the Older Dryas biozone) and the Younger Dryas biozone. No unambiguous evidence for Holocene climatic change was detected at Soppensee. Human presence is indicated by early cereal pollen and distinct pulses of forest clearance as a result of human activity can be observed from the Neolithic period onwards.  相似文献   

8.
A high resolution marine pollen record from site GeoB1023, west of the northern Namib desert provides data on vegetation and climate change for the last 21 ka at an average resolution of 185 y. Pollen and spores are mainly delivered to the site by the Cunene river and by surface and mid-tropospheric wind systems. The main pollen source areas are located between 13°S and 21°S, which includes the northern Namib desert and semi-desert, the Angola-northern Namibian highland, and the north-western Kalahari. The pollen spectra reflect environmental changes in the region. The last glacial maximum (LGM) was characterised by colder and more arid conditions than at present, when a vegetation with temperate elements such as Asteroideae, Ericaceae, and Restionaceae grew north of 21°S. At 17.5 ka cal. B.P., an amelioration both in temperature and humidity terminated the LGM but, in the northern Kalahari, mean annual rainfall in the interval 17.5-14.4 ka cal. B.P. was probably 100–150 mm lower than at present (400–500 mm/y). The Late-glacial to early Holocene transition includes two arid periods, i.e. 14.4–12.5 and 10.9–9.3 ka cal. B.P. The last part of the former period may be correlated with the Younger Dryas. The warmest and most humid period in the Holocene occurred between 6.3 and 4.8 ka cal. B.P. During the last 2000 years, human impact, as reflected by indications of deforestation, enhanced burning and overgrazing, progressively intensified.  相似文献   

9.
Nine sites along the downstream and middle section of the Loire river at Cordemais (Loire Atlantique, France) situated in the estuary to Saint-Nicolas-de-Bourgueil (Indre et Loire, France) were investigated. Interdisciplinary studies combined palynology, geography, archaeology, sedimentology and history, thus enabling us to reconstruct the evolution and the long-term response of the Loire valley ecosystem to natural variations and anthropogenic pressure from the Preboreal to the present in an integrated manner. The Atlantic marine transgression (between 7000 and 5000 B.P.) caused the level of brackish water to increase at Oudon between 6740+205/–200 and 5010+115/–100 B.P. This phenomenon, which was the first of its kind to be detected near the central Loire region (approximately 80 km from the current mouth of the Loire river), was accompanied by the development of subhalophile vegetation (Chenopodiaceae) and the appearance of dinoflagellate cysts. A regressive phase occurred during the Subboreal, about 4500 B.P., and led to the erosion of most of the estuarian sediments and to the disappearance of plant species linked to salinity at Oudon: peat deposits built up at most other sites. Human activities had an early effect; moderate deforestation took place at Champtocé about 6600 B.P. as farming was already orientated towards rearing animals. However, possibly cultivated plants were present towards the middle and the end of the Neolithic period (wheat, rye, buckwheat, flax) at about 5600 B.P. and chestnut and walnut were probably exploited in the Loire valley region at about 4600 B.P. The Bronze Age seemed to mark a phase when societies settled down (planting of vineyards) and deforestation peaked from the Gallo-Roman period onwards. The textile industry (flax, hemp), in the context of crop rotation set up during the Iron Age, developed rapidly during the Middle Ages, whereas nowadays the rearing of animals is the dominant activity in the Loire Valley, following the introduction of maize into the region in 1950.  相似文献   

10.
A modern analogue technique is applied to two high-resolution pollen sequences from NW Romania to provide the first quantitative evidence for winter, summer and annual temperatures and for precipitation across the Holocene in this region.

The pollen-based climate reconstructions allow the identification of four main intervals: i) an early, less stable period between 11,700 and 11,200 cal. yr BP; (ii) generally stable conditions between 11,200 and 8300 cal. yr BP with winter and annual temperatures and precipitation higher than at present, and summer temperatures about the same; (iii) lower winter and annual temperatures, and higher summer temperatures and precipitation between 8000 and 2400 cal. yr BP; (iv) warmer winter and annual temperatures and lower precipitation for the last 2400 years, whereas summer temperatures became cooler at Steregoiu and remained stable at Preluca Tiganului.

The pollen-based climate reconstructions at the two sites show similar patterns in annual and winter temperatures and precipitation changes during the Holocene, but the trends appear to be less consistent for summer temperatures.

Our pollen-based reconstructions revealed several short-term climatic oscillations during the Holocene, the strongest of which occur between 10,300–10,100, 8300–8000, 6800–6400, 5100–4900, 4000–3600 and 3200–3000 cal. yr BP.  相似文献   


11.
A standardized analysis of palaeoecological data, in the form of six pollen sequences and forty- four radiocarbon ages, has permitted a region-wide reconstruction of Late Quaternary vegetation dynamics for the interlacustrine highlands of central Africa.
A landscape widely dominated by ericaceous scrub and grasslands, but also supporting sparse patches of open-canopied montane forest, possibly in those areas with a topography most favourable to the growth of trees, is indicated for the last glacial maximum of 18,000 yr bp . Major expansions in the extent of upper altitudinal forms of montane forest occurred from around 12,500 yr bp , while lower moist montane forest—the expected climax for much of the region today—did not become prominent until 11,000 yr bp to 10,000 yr bp . From the palaeoecological evidence at least, it appears that the major east Central forest refuge, proposed by some workers on the basis of current species' distribution patterns, did not extend to the eastern flanks of the Albertine Rift.
A late glacial–early Holocene transition is only fully chronicled in two of the sites. However, it appears that the expansion of lower montane forest had a time-transgressive pattern across the region, and was not simply from low to high altitude. The composition of forests during the early Holocene appears to have been different to that in the later stages of the present interglacial, as taxa presently associated with wetter and/or more open forest types were much more common. Pollen data also indicate that higher altitude parts of the interlacustrine highlands were more attractive to the earliest (possibly Bantu-speaking) farmers and metal-workers. There is evidence of wide-spread forest clearance around the beginning of the present millennium, possibly as a result of substantial changes in socio-economic conditions, and patterns of settlement, associated with the onset of the Late Iron Age.  相似文献   

12.
On the Taymyr Peninsula and Severnaya Zemlya Archipelago, Central Siberia, a joint German/Russian multidisciplinary research project focuses on the Late Quaternary history of climate and environment. Within the scope of this project, palynological studies were carried out on a 10.8-m core from Lama Lake, situated in the south-west of the research area. The core, which did not reach the base of the lacustrine sediments, reveals the vegetation and climate history of the last 17 000 years and demonstrates that this area was not glaciated during that time. The Pleistocene/Holocene transition is, as elsewhere in the northern hemisphere, characterized by increased temperatures during the Bølling, Allerød and Preboreal with interruptions during the Older (post-Bølling) and Younger Dryas events. The Holocene climate optimum at Lama Lake probably occurred within the Boreal period, when dense larch forests developed. The Atlantic period was characterized by warm conditions that favoured the establishment of larch-spruce forests, though a climatic deterioration is also recorded. During the Subboreal, spruce fluctuated in importance, on the basis of which it is suggested that there were two cool periods with an intervening warm period. Since 3000 B.P., the climate has become considerably cooler and forests have degenerated. During the last 1000 years, unfavourable climate conditions have resulted in a forest tundra and widespread tundra communities developing in the Lama Lake region.This paper is dedicated to Hans-Jürgen Beug on the occasion of his 65th birthday.  相似文献   

13.
The direct comparison between microcharcoal and pollen data from the Holocene sediment core of Lago di Pergusa (central Sicily, Italy) led us to investigate the linkages between fire, vegetation, and climate in the Mediterranean Basin. The role of human populations in shaping the environment of the last millennia was closely examined as well. Pollen and charcoal were extracted using a standard pollen methodology and both identified from the same pollen slides. At Lago di Pergusa the importance of fire in maintaining and favouring a Mediterranean vegetation, a basic concept in ecology, seems to be inconsistent, as important fires took place in the open environments with xeric vegetation at the beginning of the Holocene well before the expansion of evergreen vegetation. On the contrary some big fires seem to have happened in the period (around 8000 years BP) in which the greatest wetness, the thickest forest canopy, and the most important expansion of submontane vegetation of the record are found. A probable explanation of this phenomenon can be found in the precipitation regime, in the increased available biomass and in the resulting increase in combustible material, indicating also that the highest humidity achieved in central Sicily during the Holocene was not strong enough to prevent fires. During this period drops in arboreal pollen concentration match in minima in the charcoal curves. Fires were practically absent during the Neolithic and Eneolithic periods and not responsible for the general trend towards aridification identified in the pollen record, at times in which prehistoric populations are generally believed to have caused forest clearance by burning. Important and frequent burnings are documented for the Bronze and Iron Ages and probably not all of them were fires of living trees, but burning of wood for producing metals, cooking or heating. The occurrence of a fire around 3700 years BP temporarily caused a minor decrease of arboreal pollen concentration. In the open landscapes of the two last millennia an almost continuous sign of regional burnings is recognized, confirming the historical evidence of an intense land use in central Sicily at least since Roman times.  相似文献   

14.
Aim This study aims to assess the sensitivity of calcareous grassland vegetation to climate change and to indicate the most probable direction of change. Location The study area was a region of Britain, Ireland, France and Spain, centred on the Bay of Biscay, which was defined using a land classification based on climatic criteria. Methods Vegetation was sampled in the field, with additional data collected on soils, climate, management and land cover. The vegetation samples were ordinated by detrended correspondence analysis in order to explore the main gradients present and as a basis for modelling changes. Environmental data were summarized by ordination techniques, with the scores generated used to predict the current vegetation score on the first two ordination axes by multiple regression. The model was then manipulated to represent a 2 °C increase in temperature and resulting shifts in the vegetation samples in terms of their species composition assessed. Results There was a good general agreement between the original vegetation ordination axis scores and those predicted by the model, the latter of which were based on environmental data alone. Following a 2 °C increase in temperature, the predicted changes in the ordination space were demonstrated to be subtle, consisting of small shifts towards vegetation associated with warmer conditions, representing distances 100 km or less on the ground. Main conclusions The models are simple but nevertheless provide a useful basis for the investigation of potential vegetation change. The shifts in the ordination space represent more minor changes than those predicted in previous studies. This suggests that the potential for major change is lower when environmental factors such as soil and management are considered in addition to climate. The potential for change is also reduced when vegetation is considered as a whole rather than on an individual species basis, due to both interspecific interactions and interactions with environmental factors acting as constraints.  相似文献   

15.
A palynological investigation of a Holocene profile from Lake Voulkaria, western Greece, was carried out as a contribution to the environmental history of the coastal area of northwestern Acarnania and the Classical city of Palairos. It shows that deciduous oaks dominated the natural vegetation of the area throughout the Holocene. Until ca. 7000 B.C. Pistacia occurred abundantly, while other evergreen woody taxa were rare. At ca. 6300 B.C. an expansion of Carpinus orientalis/Ostrya can be observed. Around ca. 5300 B.C. spreading of Erica indicates a change to a drier climate and/or first human impact. Since ca. 3500 B.C. an increase of evergreen shrubs now clearly indicates land-use. The foundation of the Classical city of Palairos led to a temporary expansion of Phillyrea maquis. Within this period, molluscs of brackish water indicate the use of the lake as a harbour after the construction of a connection to the sea. The deciduous Quercus woodland recovered when human impact decreased in the area, and lasted until modern times.  相似文献   

16.
Palaeoecological investigations of a small mire in Ötztal, Tyrol, Austria, situated about 50 m above the potential tree-line, indicates that human impact on the landscape started with burning of heath at approximately 5300 B.P. At about 4800 B.P. a weak increase in important apophytes may reflect the local presence of domestic animals. Between 4000 and 3500 B.P. a clear decline in pastoral activity occurred. From 3000 B.P. a strong increase in the representation of apophytes suggests local summer settlement, while in the interval 2600–2200 B.P. anthropogenic activity declined. After 2150 B.P. there was a marked increase in summer farm activity. Fresh information is presented on tree-line fluctuations during the Holocene: Pinus cembra forest ascended above the present potential tree-line by more than 50–100 m between 9000–8000 B.P., 6000–5500 B.P., and 3800–3000 B.P. A Betula maximum between 7000 and 5500 B.P. is probably due to succession in nearby avalanche tracks, as well as to a higher tree-line. Low humification and low loss-on-ignition values around 6000 B.P. may reflect the Frosnitz stadial (6900–6000 B.P.). The Rootmoos I stadial (5400 B.P.) and probably the early Sub-Atlantic stadial maximum (3000–2300) are also reflected in the physical properties of the peat profile.  相似文献   

17.
The palynological sequence from core ND-1 on the Song Hong delta in the northern Vietnam reveals the climate change during the last deglaciation. The identified pollen in the core is dominated by Castanopsis (Lithocarpus), Elaeocarpus, Ficus, Piperaceae and Quercus. High percentages of temperate taxa including the conifers Dacrydium, Podocarpus, Pinus, Cupressaceae, Txodiaceae and Cryptomeria, and broad-leaved taxa of Carpinus, Alnus, Juglans, Carya, Ulmus, Fagus, Ilex, Castanea, Quercus, which have a mainly upland distribution, is possibly associated with a lowering of the montane vegetation boundary. On the other hand, intensified river influence can also result in an increase in the temperate allochthonous taxa. After analyzing the magnitude of river influence on pollen assemblages during the sedimentary environment evolution, we extracted the climate information and used this to reconstruct climate change during the last deglaciation. A cooler climate during 14.5-10.9 cal. kyr BP than at present is indicated by higher percentage of temperate types than at present under a similar river influence on the floodplain. The Younger Dryas cooling event is recognized by widely developed grasslands between 12.9 and 11.6 cal. kyr BP, adding to the evidences for this period from both terrestrial and marine records in regions influenced by the East Asian monsoon. Two other cooling periods, 9.4-9.0 cal. kyr BP and 6.5-5.2 cal. kyr BP, are indicated by increases of temperate pollen taxa such as Cryptomeria, Alnus, Quercus, and Castanea.  相似文献   

18.
Two14C-dated pollen profiles from mires in the steppe belt of southern Russia are presented. On the basis of these and data from earlier investigations, the Holocene forest history of the southern part of Russia and Ukraine is reconstructed. The steppe belt is very sensitive to climatic oscillations and, in particular, to changes in evapotranspiration. The most favourable climate occurred between 6000 and 4500 B.P. (6800–5200 cal. B.P.), when forest attained its maximum extent in the steppe belt. The period 4500–3500 B.P. (5200–3800 cal. B.P.) was characterised by drier climate with the most arid phase occurring between 4200–3700 B.P. (4700–4000 cal. B.P.). During arid phases, the area under forest and also peat accumulation rates declined. Subsequently, a number of less pronounced climatic oscillations occurred such as in the period 3400/3300–2800 B.P. (3600/3500–2900 cal. B.P.) when there was a return to more humid conditions. During the last 2500 years, the vegetation cover of the steppe belt in southern Russia and Ukraine took on its present-day aspect. On the one hand, there is close correlation between the Holocene vegetation history of southern Russia and Ukraine and, on the other hand, the steppe belt of Kazakhstan and transgressions in the Caspian sea. Human impact on the natural vegetation became important from the Bronze Age onwards (after 4500 B.P.; 5200 cal. B.P.). Particular attention is given to the history of Scots pine (Pinus sylvestris), which had a much wider distribution in the southern part of eastern Europe in the early Holocene. The reduction in range during recent millennia has come about as a result of the combined effects of both climatic deterioration and increased human impact.  相似文献   

19.
In spite of decades of intense research directed toward understanding the climates and ecology of the Great Basin (western United States) during the past 10,000 years, the responses of mammals to the extreme aridity of the Middle Holocene (c. 8000–5000 years ago) in this region have been poorly understood. Using a well‐dated small mammal sequence from Homestead Cave, north‐central Utah, I show that the Middle Holocene small mammal faunas of this area underwent a decrease in species richness and evenness, driven largely by a series of local extinctions and near‐extinctions coupled with a dramatic increase in the abundance of taxa well‐adapted to xeric conditions. At the end of this period, some taxa that require relatively mesic habitats began to increase in abundance immediately, others did not rebound in abundance until several thousand years later, while still others have not returned at all. This suite of responses has been difficult to detect because climatic change at the beginning of the Middle Holocene was so much more substantial than that which occurred toward its end.  相似文献   

20.
Ireland’s geographic location on the western fringe of the European continent, together with its island status and impoverished avifauna, provides a unique opportunity to observe changes in bird migration and distribution patterns in response to changing climatic conditions. Spring temperatures have increased in western Europe over the past 30 years in line with reported global warming. These have been shown, at least in part, to be responsible for changes in the timing of life cycle events (phenology) of plants and animals. In order to investigate the response of bird species in Ireland to changes in temperature, we examined ornithological records of trans-Saharan migrants over the 31-year period 1969–1999. Analysis of the data revealed that two discrete climatic phenomena produced different responses in summer migrant bird species. Firstly, a number of long-distance migrants showed a significant trend towards earlier arrival. This trend was evident in some species and was found to be a response to increasing spring air temperature particularly in the month of March. Secondly, (1) a step change in the pattern of occurrences of non-breeding migrant bird species, and (2) an increase in the ringing data of migrant species were found to correlate with a step change in temperature in 1987–1988. These results indicate that, for migrant bird species, the impact of a sudden change in temperature can be as important as any long-term monotonic trend, and we suggest that the impact of step change events merits further investigation on a wider range of species and across a greater geographical range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号