首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile method for the formation of covalent bonds between protein molecules is zero length cross-linking. This method enables the formation of cross-links without use of any chemical reagents. Here, we report a cross-linking method for lysozyme and some structural studies as well as catalytic activity assay was performed on lysozyme dimer. The results showed that catalytic activity of lysozyme dimer was the same as monomer. Also, the GdnCl-induced equilibrium unfolding of hen egg-white lysozyme monomer and dimer at pH 2 was studied over a temperature range of 290.7-303.2 K by means of CD spectroscopy. The lack of coincidence between two unfolding curves at 222 and 289 nm in lysozyme dimer was observed, which suggested the existence of intermediate state in unfolding process, while lysozyme monomer showed a single cooperative transition. Thus, the thermodynamic parameters were estimated on the basis of two-state mechanism for lysozyme monomer and three-state one for lysozyme dimer. These results indicated that zero length cross-linking can stabilize the intermediate, so the population of intermediate increased. Our results offer a special opportunity to study the role of intermediates in protein folding mechanisms. In addition thermal unfolding of monomer and dimer in 222 nm was achieved.  相似文献   

2.
A facile method for the formation of zero-length covalent cross-links between protein molecules in the lyophilized state without the use of chemical reagents has been developed. The cross-linking process is performed by simply sealing lyophilized protein under vacuum in a glass vessel and heating at 85 degrees C for 24 h. Under these conditions, approximately one-third of the total protein present becomes cross-linked, and dimer is the major product. Chemical and mass spectroscopic evidence obtained shows that zero-length cross-links are formed as a result of the condensation of interacting ammonium and carboxylate groups to form amide bonds between adjacent molecules. For the protein examined in the most detail, RNase A, the cross-linked dimer has only one amide cross-link and retains the enzymatic activity of the monomer. The in vacuo cross-linking procedure appears to be general in its applicability because five different proteins tested gave substantial cross-linking, and co-lyophilization of lysozyme and RNase A also gave a heterogeneous covalently cross-linked dimer.  相似文献   

3.
T Ueda  H Yamada  M Hirata  T Imoto 《Biochemistry》1985,24(22):6316-6322
Hen egg white lysozyme was treated at pH 5.5 with four bifunctional reagents, bis(bromoacetamide) derivatives [BrCH2CONH(CH2)nNHCOCH2Br, 1-n, n = 0, 2, 4, and 6], to alkylate His-15 monofunctionally. The excess bifunctional reagent was then removed, and the pH was raised to 9.0 to allow the other end of the reagent molecule to react. The shortest reagent (1-0) gave no intramolecularly cross-linked lysozyme derivative but only histidine-15-modified lysozyme monomer and intermolecularly cross-linked lysozyme dimer. However, the reagents with longer arms (1-2, 1-4, and 1-6) gave lysozyme derivatives cross-linked intramolecularly between the nitrogen at epsilon 2 of His-15 and the epsilon-amino group of Lys-1 without formation of any other intramolecularly cross-linked lysozyme derivative. These results are consistent with our previous proposal that lysozyme has a small hydrophobic pocket that binds small molecules in the direction from His-15 to Lys-1 [Yamada, H., Uozumi, F., Ishikawa, A., & Imoto, T. (1984) J. Biochem. (Tokyo) 95, 503-510]. The thermal stabilities of three cross-linked lysozymes thus obtained were investigated in 0.1 M acetate buffer containing 3 M guanidine hydrochloride at pH 5.5. All derivatives were stabilized but to different degrees. The derivative cross-linked with 1-4 was most stabilized (2.3 kcal/mol), but the derivatives cross-linked with the reagents both shorter (1-2) and longer (1-6) than 1-4 were less stabilized (both 1.6 kcal/mol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Isolated oxoglutarate carrier (OGC) can be cross-linked to dimers by disulfide-forming reagents such as Cu2+-phenanthroline and diamide. Acetone and other solvents increase the extent of Cu2+-phenanthroline-induced cross-linking of OGC. Cross-linked OGC re-incorporated in photeoliposomes fully retains the oxoglutarate transport activity. The amount of cross-linked OGC calculated by densitometry of scanned gels depends on the method of staining, since cross-linked OGC exhibits a higher sensitivity to Coomassie brilliant blue as compared to silver nitrate. Under optimal conditions the formation of cross-linked OGC dimer (stained with Coomassie brilliant blue) amounts to 75% of the total protein. Approximately the same cross-linking efficiency was evaluated from Western blots. Cross-linking of OGC is prevented by SH reagents and reversed by SH-reducing reagents, which shows that it is mediated by disulfide bridge(s). The formation of SS bridge(s) requires the native state of the protein, since it is suppressed by SDS and by heating. Furthermore, the extent of cross-linking is independent of OGC concentration indicating that disulfide bridge(s) must be formed between the two subunits of native dimers. The number and localization of disulfide bridge(s) in the cross-linked OGC were examined by peptide fragmentation and subsequent cleavage of disulfide bond(s) by β-mercaptoethanol. Our experimental results show that cross-linking of OGC is accomplished by a single disulfide bond between the cysteines 184 of the two subunits and suggest that these residues in the putative transmembrane helix four are fairly close to the twofold axis of the native dimer structure.  相似文献   

5.
Bischloromethylpentanedione, bischloromethylhexanedione, bischloromethyloctanedione and bischloromethyldecanedione were synthesized from their corresponding dicarboxylic acids via the bis-acyl chloride and the bisdiazomethylketone derivatives. These compounds proved to be highly specific cross-linking reagents for rabbit skeletal-muscle glyceraldehyde 3-phosphate dehydrogenase. Incubation of the enzyme with cross-linking reagents resulted in both a time- and concentration-dependent formation of covalently linked oligomeric structures. The major cross-linked product detected by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was the dimer (mol. wt. 72000). Sepharose 6B chromatography of the cross-linked enzyme showed that it still existed as the tetramer. Cross-linking was dependent on the native structure of the enzyme, since it was abolished on denaturation of the enzyme. The actual covalently linked product depends on the conditions of modification and the chain length of the reagent. The maximum yield of dimer (70-80%) was obtained with bischloromethylhexanedione, and the yield decreased with either shorter- or longer-chain compounds. The calculated distance between the two reactive points in bischloromethylhexanedione is 1.21-1.45nm. Bischloromethylhexanedione modified at least two thiol groups per monomer. Modification of the active-site thiol, cysteine-149, was not essential for cross-linking, since glyceraldehyde 3-phosphate dehydrogenase carboxymethylated on cysteine-149 still reacted to form the dimer. The rate of chemical cross-linking was markedly decreased by increasing the NAD(+) occupancy of the enzyme active sites. These experiments are discussed in terms of the asymmetry of the enzyme structure in solution.  相似文献   

6.
A nucleic acid-bound capsid protein dimer was previously identified using a Sindbis virus in vitro nucleocapsid assembly system and cross-linking reagents. Cross-link mapping, in combination with a model of the nucleocapsid core, suggested that this dimer contained one monomer from each of two adjacent capsomeres. This intercapsomere dimer is believed to be the initial intermediate in the nucleocapsid core assembly mechanism. This paper presents the purification of cross-linked dimers of a truncated capsid protein and the partial purification of cross-linked dimers of a full-length assembly-defective mutant. The assembly of core-like particles from these cross-linked capsid protein dimers is demonstrated. Core-like particles generated from cross-linked full-length mutant CP(19-264)L52D were examined by electron microscopy and appeared to have a morphology similar to that of wild-type in vitro-assembled core-like particles, although a slight size difference was often visible. Truncated cross-linked CP(81-264) dimers generated core-like particles as well. These core-like particles could subsequently be disassembled when reversible cross-linking reagents were used to form the dimers. The ability of the covalent intercapsomere cross-link to rescue capsid proteins with assembly defects or truncations in the amino-terminal region of the capsid protein supports the previous model of assembly and suggests a possible role for the amino-terminal region of the protein.  相似文献   

7.
New homo- and heterobifunctional cross-linking reagents have been synthesized. These reagents are based on ortho ester, acetal, and ketal functionalities that undergo acid-catalyzed dissociation but are base stable. The protein-reactive group in all the homobifunctional reagents is a maleimide group; the heterobifunctional acetal cross-linker has a maleimide group at one end and an N-hydroxysuccinimide ester at the other. These reagents have been used to cross-link diphtheria toxin (DT) to itself to give covalently cross-linked DT dimer or to conjugate DT monomer to the anti-CD5 antibody, T101. The hydrolysis of these cross-linked proteins was studied as a function of pH. Cleavage rates vary from minutes to hours at the pH of acidified cellular vesicles (approximately pH 5.4), ortho esters being the fastest, acetals the slowest, and ketals intermediate, but the cross-linked products are approximately 100 times more stable at the vascular pH of 7.4 and 1000 times more stable at a storage pH of 8.4 in all cases. The utility of these reagents in the reversible blockade of a toxic protein functional domain was demonstrated by using cross-linked DT dimer where the blocking and unblocking of toxin binding sites correlates with cellular toxicity. Of the different cross-linkers described, the acetone ketal, bis(maleimidoethoxy)propane (BMEP), appears to be the most promising in the construction of highly efficacious immunotoxins.  相似文献   

8.
Structure of the tubulin dimer   总被引:17,自引:0,他引:17  
Microtubules are formed from a 110,000-dalton dimeric subunit called tubulin. Two forms of 55,000-dalton monomer, alpha and beta, are found in all microtubule preparations. The dimers could thus theoretically be either heterodimers (alphabeta) or homodimers (alphaalpha and betabeta). This problem was investigated by stigated by chemical cross-linking using several bifunctional reagents, of which one, dimethyl-3,3-(tetrame thylenedioxy) dipropionimidate dihydrochloride (DTDI), was able to make intradimer bonds in tubulin. When soluble chick brain tubulin was cross-linked with DTDI and analyzed by electrophoresis in an acrylamide gel system capable of resolving alphaalpha, alphabeta, and betabeta, 60 to 90% of the cross-linked dimer was alphabeta. If tubulin was incubated at 24 degrees prior to cross-linking with DTDI the total yield of cross-linked dimer increased with time, indicating that tubulin was forming loose aggregates. The relative amounts of cross-linked dimer alphaalpha and betabeta also increase with time, indicating that soluble tubulin is largely alphabeta, and suggesting that cross-linked alphaalpha and betabeta arise from nonspecific aggregation during tubulin purification. The aggregation observed by cross-linking with DTDI was strongly influenced by colchicine and Vinca alkaloids in a pattern similar to the effects of these drugs on tubulin polymerization.  相似文献   

9.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

10.
Adeno-associated virus 2 Rep40 helicase is involved in packaging single-stranded genomic DNA into virions. ATPase activity was stimulated 5-10-fold by DNA, depending upon assay conditions. The concentration dependence of Rep40 ATPase activity in the absence and presence of DNA indicates that the monomer is inactive and that the active enzyme is at least a dimer. Binding to oligonucleotides, examined by fluorescence anisotropy, was positively cooperative and required ATP or ATPgammaS; ADP and AMPPCP did not promote binding. The cooperativity and the nucleotide requirement were also demonstrated by surface plasmon resonance. Although the Rep40 behaves as a monomer in solution, it binds to DNA as an oligomer. The requirement of a nucleotide for DNA binding and the stimulation of ATPase activity by DNA indicate that the two processes are linked. Glutaraldehyde cross-linking generated a species that migrates as a trimer on sodium dodecyl sulfate (SDS) gel electrophoresis; ATPS promoted the formation of this species and higher order oligomers. The predominant cross-linked species was a trimer in the absence of ATPgammaS, regardless of whether duplex or single-stranded DNA was present. In the presence of duplex or single-stranded DNA and ATPgammaS, glutaraldehyde cross-linking generated a species that behaved as a dimer on SDS gel elctrophoresis. Sucrose-gradient velocity sedimentation of Rep40 gave an S20,w of 3 in the absence of ligands or in the presence of a 26 bp duplex DNA. The S20,w was 3.5 in the presence of ATPgammaS and 7 and 7.6 in the presence of DNA and ATPgammaS.  相似文献   

11.
Isolated uncoupling protein (UCP) can be cross-linked, by various disulfide-forming reagents, to dimers. The best cross-linking is achieved with Cu2+-phenanthroline oxidation. Because cross-linking is independent of UCP concentration and prevented by SDS addition, a disulfide bridge must be formed between the two subunits of the native dimer. Cross-linking is prevented by SH reagent and reversed by SH-reducing reagents. In mitochondria, cross-linking of UCP with disulfide-forming agents is even more efficient than in isolated state. It proves that UCP is a dimer in mitochondria, before isolation. Disulfide-bridge formation does not inhibit GTP-binding to UCP. Cross-linked UCP re-incorporated in proteoliposomes either before or after cross-linking fully retains the H1-transport function. Rapid cross-linking by membrane impermeant reagents indicates a surface localization of the C-terminus in soluble UCP and projection to the outer surface in mitochondria. Intermolecular disulfide-bridge formation in a dimer requires juxtaposition of identical cysteines at the twofold symmetry axis. A rigid juxtaposition of cysteines is unlikely, unless intended for a native disulfide bridge. The absence of such a bridge in UCP suggests that juxtaposition of cysteines is generated by high mobility. In order to localize the cysteine involved, cross-linked UCP was cleaved by BrCN. The CB-7 C-terminal peptide, which contains cysteines at positions 287 and 304, disappears. Limited trypsinolytic cleavage, previously shown to occur at Lys-292, removed cross-linking in UCP both in the solubilized and mitochondrially bound state. The cleaved C-terminal peptide of 11 residues contains only cystein-304 which, thus, should be the only one (out of 7 cysteines in UCP) involved in the S-S bridge formation. Obviously, the C-terminal location of the cysteine, because of its high mobility, permits juxtapositioning for cross-linking. This agrees with predictions from hydrophobicity analysis that the last 14 residues in UCP protrude from the membrane.  相似文献   

12.
Radioiodinated human choriogonadotropin was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to the hormone receptor on porcine granulosa cells and the solubilized sample was electrophoresed. Cross-linked samples revealed four additional bands of slower electrophoretic mobility in addition to the hormone alpha, beta, and alpha beta dimer bands. The four bands corresponded to masses of 68, 74, 102, and 136 kDa whereas the alpha beta dimer band corresponded to 50 kDa. Formation of the four bands requires the 125I-hormone to bind specifically to the receptor with subsequent cross-linking. Binding can be prevented by excess of native hormone but not by follitropin. A monofunctional analog of the cross-linking reagent failed to produce the four bands. They were also produced by cross-linking Triton X-100-solubilized hormone-receptor complexes. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of the cross-linked sample were treated with reagents that cleave covalent cross-links and then electrophoresed in a second dimension gel, 18-, 24-, 28-, and 34-kDa components were released, in addition to the alpha and beta subunits of the native hormone. Simultaneous peptide mapping of the cross-linked complexes in the gel matrix with Staphylococcus V8 protease or papain revealed progressive proteolysis to generate terminal fragments of 30 or 27 kDa, respectively. These fragments were unique to and commonly present in the 74-, 102-, and 136-kDa hormone-receptor complexes but were not produced by proteolysis of the cross-linked human choriogonadotropin (hCG) alpha beta dimer or the hCG alpha subunit. Apparently, the radioactively labeled segment(s) of the alpha subunit of 125I-hCG was cross-linked to the 24-kDa component. The results demonstrate the protein nature of the receptor and suggest that 125I-hCG was initially cross-linked to the 24-kDa component to generate the 74-kDa complex, then the 28- and 34-kDa components were sequentially cross-linked to the 24-kDa component in the 74-kDa complex to generate the 102- and 134-kDa complexes.  相似文献   

13.
Dialysis kinetics measurements have been made to study the effect of ionic strength on the dimerization of lysozyme in acidic solutions that lead to the growth of tetragonal lysozyme crystals. Using glutaraldehyde cross-linked dimers of lysozyme, we have determined that both monomers and dimers can escape from 25,000 molecular weight cutoff dialysis membranes with velocity constants of 5.1 x 10(-7) and 1.0 x 10(-7) s(-1) for the monomer and dimer species, respectively. The flux from 25K MWCO membranes has been measured for lysozyme in pH 4.0 buffered solutions of 1, 3, 4, 5, and 7% NaCl over a wide range of protein concentrations. Assuming that dimerization is the first step in crystallization, a simple monomer to dimer equilibrium was used to model the flux rates. Dimerization constants calculated at low protein concentrations were 265, 750, 1212, and 7879 M(-1) for 3, 4, 5, and 7% NaCl, respectively. These values indicate that dimerization increases with the ionic strength of the solution suggesting that aggregation is moderated by electrostatic interactions. At high protein concentrations and high supersaturation, the dimerization model does not describe the data well. However, the Li model that uses a pathway of monomer <-> dimer <-> tetramer <-> octamer <-> 16-mer fits the measured flux data remarkably well suggesting the presence of higher order aggregates in crystallizing solutions.  相似文献   

14.
It was shown that weak combined static (42 microT) and low-frequency variable (40 nT; 3-5 Hz) magnetic fields change the intensity of intrinsic fluorescence of some proteins (cytochrome c, bovine serum albumin, horseradish peroxidase, alkaline phosphatase). The effect can be interpreted as a change in the conformational state of the protein in water environment by the action of weak magnetic fields. The dynamics of the process, the concentration dependence, the binding of proteins to the fluorescence probe 1,8-ANS after treatment with magnetic fields, the frequency dependence of these reactions, and the dependence of the effect on the presence of the static constituent of the magnetic field were studied. It was shown that the changes in the intrinsic fluorescence of some enzymes (horseradish peroxidase, alkaline phosphatase) are related to changes in their functional activity. It was found that the effect is partially transferred via a solvent (water, 0.01 M NaCl) preliminarily treated with magnetic field. In the solvent, changes in its intrinsic fluorescence by the action of weak magnetic fields were also registered.  相似文献   

15.
Enzymic cross-linkage of monomeric extensin precursors in vitro   总被引:7,自引:4,他引:3       下载免费PDF全文
Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, we purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers in the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. We therefore identified the cross-linking activity as extensin peroxidase.  相似文献   

16.
In this study, we use FTIR spectroscopy to probe the conformational changes of beta-lactoglobulin (beta-LG)-the main constituent of whey proteins-as subjected to enzymatic cross-linking by transglutaminase. We investigate both the amide I region (1600-1700 cm(-1)) and the C-H stretching region (2800-3100 cm(-1)). In the amide I region, spectra of denatured conformations of beta-LG, known to be necessary for cross-linking, differ according to the denaturation procedure, i.e., chemical or thermal treatment. Denaturation by chemical denaturants, dithiothreitol (DTT) or beta-mercaptoethanol, show no effect on the alpha-helix, while shifting the monomer dimer equilibrium toward higher monomer concentration. On the other hand, denaturing by thermal treatment dissociates the beta-sheets in the native structure, leading to new intermolecular beta-sheets being formed. Preheated then enzyme cross-linked beta-LG molecules show very similar spectra in the amide I region to the molecules with no cross-linking, indicating minimal effects of the cross-links on the carbonyl stretching mode. However, chemically denatured (using beta-mercaptoethanol) then enzyme cross-linked beta-LG molecules show noticeable diminution in the alpha-helix band and formation of strong hydrogen-bonded intermolecular beta-sheets. In the C-H stretching region, preheated then enzyme cross-linked beta-LG molecules exhibit a different degree of exposure of aliphatic amino acids due to the enzyme action. The same behavior is observed for DTT-treated then enzyme cross-linked beta-LG molecules. Generally, the changes in the C-H stretching region clearly indicate that hydrophobic interactions are altered upon enzymatic cross-linking.  相似文献   

17.
One interferon gamma receptor binds one interferon gamma dimer   总被引:3,自引:0,他引:3  
We investigated the stoichiometry of the interferon gamma and interferon gamma receptor interaction, using recombinant interferon gamma and recombinant soluble interferon gamma receptor, applying chemical cross-linking and chromatographic techniques, and analyzing the resulting products in denaturing polyacrylamide gels. Interferon gamma cross-linked to itself produced a major band of an apparent molecular mass of 34 kDa, which suggests that it exists as a dimer in physiological buffer and which agrees with published data. Soluble interferon gamma receptor cross-linked to itself produced mainly a 28-kDa band, suggesting that the interferon gamma receptor exists as a monomer. Interferon gamma cross-linked to the soluble interferon gamma receptor resulted in the formation of two main products of apparent molecular masses of 60 and 44 kDa. The predominant 60-kDa band resulted from the cross-linking of one interferon gamma dimer (34 kDa) to one interferon gamma receptor molecule (27 kDa). The 44-kDa band was formed by the cross-linking of one interferon gamma molecule to one interferon gamma receptor. Kinetic studies showed that the cross-linking of interferon gamma dimer to the soluble receptor proceeds through the intermediate formed by cross-linking one molecule of the interferon gamma dimer to the receptor. Reducing and dissociating agents inhibited complex formation. When chromatographed on Sephadex G-100, interferon gamma was eluted as a protein of 34-kDa molecular mass, the soluble interferon gamma receptor as a protein of 40 kDa, and their mixture was eluted in one peak corresponding to an apparent molecular mass of 73 kDa. Sodium dodecyl sulfate-polyacrylamide gel analysis of the eluted mixture showed the presence of both interferon gamma and interferon gamma receptor at a ratio of 2:1. The found results suggest that the interferon gamma receptor binds interferon gamma as a dimer.  相似文献   

18.
G R Parr  G G Hammes 《Biochemistry》1976,15(4):857-862
The kinetics of dissociation and reassembly of rabbit skeletal muscle phosphofructokinase has been studied using fluorescence, stopped-flow fluorescence and enzyme activity measurements. The dissociation of the fully active tetramer in 0.8 M guanidine hydrochloride (0.1 M potassium phosphate, pH 8.0) occurs in three kinetic phases as measured by changes in the protein fluorescence emission intensity: dissociation of tetramer to dimer with a relaxation time of a few milliseconds; dissociation of dimer to monomer with a relaxation time of a few seconds; and a conformational change of the monomer with a relaxation time of a few minutes. All three phases exhibit first-order kinetics; ATP (0.05 mM) retards the second step but does not influence the rate of the other two processes. The rate of the second process increases with decreasing temperature; this may be due to the involvement of hydrophobic interactions in the stabilization of the dimeric enzyme. A further unfolding of the monomer polypeptide chain occurs at higher guanidine concentrations, and the relaxation time associated with this process was found to be 83 ms in 2.5 M guanidine, 0.1 M potassium phosphate (pH 8.0) at 23 degrees C. The phosphofructokinase monomers were reassembled from 0.8 M guanidine chloride by 1:10 dilution of the guanidine hydrochloride concentration and yielded a protein with 70-94% of the original activity, depending on the protein concentration. The reactivation process follows second-order kinetics; ATP (5 mM) increases the rate of reactivation without altering the reaction order, while fructose 6-phosphate does not influence the rate of reaction. The rate-determining step is probably the association of monomers to form the dimer.  相似文献   

19.
Cross-linking of the enzymes in the glycosome of Trypanosoma brucei   总被引:7,自引:0,他引:7  
Glycosomes, the microbody-like organelles containing mainly glycolytic enzymes, were purified from the long slender bloodstream form of Trypanosoma brucei EATRO 110 monomorphic strain by an improved method in which the protozoa were frozen and thawed in 15% glycerol to free, from the plasma membrane, much of the variant surface glycoprotein which used to constitute the major contaminant of our purified glycosomes. The purified glycosomes have 11 major proteins, 6 of which, tentatively identified as phosphofructose kinase, hexokinase, 3-phosphoglycerate kinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and alpha-glycerophosphate dehydrogenase, constitute 87% of the total glycosomal protein. The bifunctional cross-linking reagents dimethyl suberimidate and dimethyl-3,3'-dithiobispropionimidate can penetrate the glycosomal membrane and cause extensive cross-linking of all the major glycosomal proteins. The cross-linked complex, insoluble in 0.1% Triton X-100 plus 0.15 M NaCl, contains all the glycosomal enzyme activities with only partial inactivations. All the enzymes are probably cross-linked into one large complex since they all sediment rapidly to the bottom of a 5-20% (v/v) sucrose density gradient. This successful cross-linking with reagents of span lengths of 11-12 A suggests close proximities among the glycosomal enzymes which may explain the extraordinarily high rate of glycolysis in T. brucei. Whether such a close association represents specific spatial arrangement required for genuine substrate channeling among the enzymes will be verified by future kinetic studies of the cross-linked enzyme complex.  相似文献   

20.
D M Segal  R L Guyer  P H Plotz 《Biochemistry》1979,18(9):1830-1835
Immunoglobin (IgG) molecules with anti-2,4-dinitrophenyl activity were covalently cross-linked by using three cross-linking reagents. The resulting oligomers were separated into monomer, dimer, trimer, and heavy fractions. These stable assemblages of IgG molecules were capable of fixing dilute whole guinea pig complement in solution. When oligomers were further aggregated noncovalently into larger complexes, all were able to fix complement. Radioiodinated oligomers were attached to 2,4,6,-trinitrophenylsulfonic acid treated sheep red blood cells (N3ph-SRBC), and the number of bound molecules was determined from the cell-associated radioactivity. Complement-mediated lysis of N3ph-SRBC was then assayed over a range of levels of bound protein and at increasing concentrations of complement. The lytic efficiencies of all oligomers increased with the number of bound molecules, with complement concentration, with hapten density on N3ph-SRBC, and with oligomer size. The results suggest that two adjacent IgG molecules may not serve as a unit signal for triggering the complement cascade, but instead, initiation occurs with increasing efficiency as the size of cell-bound IgG clusters increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号