首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC.  相似文献   

2.
Phosphorylation of the cytoskeletal protein talin by protein kinase C   总被引:12,自引:0,他引:12  
Talin, a component of the focal contact of cultured cells, is an in vitro substrate for protein kinase C. Immunoprecipitation confirms that talin is the phosphorylated protein. Phosphorylation is dependent on both phosphatidylserine and calcium and reaches a level of incorporation of 0.8 mol phosphate/mol protein. Phosphoamino acid analysis demonstrates the presence of phosphoserine and phosphothreonine, but no phosphotyrosine. Two dimensional mapping of tryptic peptides, and V8 peptides reveals the existence of multiple phosphorylation sites. The identification of talin as a substrate for protein kinase C implicates talin as a potential regulator of focal contact organization and perhaps cell morphology.  相似文献   

3.
Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus   总被引:138,自引:0,他引:138  
B M Sefton  T Hunter  E H Ball  S J Singer 《Cell》1981,24(1):165-174
Vinculin, a protein associated with the cytoplasmic face of the focal adhesion plaques which anchor actin-containing microfilaments to the plasma membrane and attach a cell to the substratum, contains 8-fold more phosphotyrosine in cells transformed by Rous sarcoma virus than in uninfected cells. Because the transforming protein of RSV, p60src, is a protein kinase that modifies cellular proteins through the phosphorylation of tyrosine and because phosphotyrosine is a very rare modified amino acid, this result is a very rare modified amino acid, this result suggests that vinculin is a primary substrate of p60src. Only trace amounts of phosphotyrosine were detected in myosin heavy chains, alpha-actinin, filamin, and the intermediate filament protein vimentin. The modification of vinculin by p60src may be responsible in part for the disruption of the microfilament organization and for the changes in cell shape and adhesiveness which accompany transformation by Rous sarcoma virus.  相似文献   

4.
Vasodilator-stimulated phosphoprotein is a substrate for protein kinase C   总被引:1,自引:0,他引:1  
Chitaley K  Chen L  Galler A  Walter U  Daum G  Clowes AW 《FEBS letters》2004,556(1-3):211-215
Vasodilator-stimulated phosphoprotein (VASP), an actin binding protein localized to areas of focal contacts, is a substrate for the cyclic adenosine monophosphate/cyclic guanosine monophosphate (cAMP/cGMP)-dependent protein kinases (PKA, PKG). In this study, we show that serum stimulation of vascular smooth muscle cells (SMCs) induces VASP phosphorylation on Ser157, in a mechanism not dependent on PKA or PKG. We tested the possibility that protein kinase C (PKC), a regulator of cytoskeletal function, is involved. PKC inhibition or down-regulation prevented serum-induced phosphorylation of VASP at Ser157 in rat vascular SMCs. Additionally, recombinant PKCalpha directly phosphorylated Ser157 on VASP. In summary, our data support the hypothesis that PKC phosphorylates VASP and mediates serum-induced VASP regulation.  相似文献   

5.
Little is known about the important cellular substrates for protein kinase C and their potential roles in mediating protein kinase C-dependent processes. We evaluated the protein kinase C phosphorylation sites in a major cellular substrate for the kinase, a protein of apparent Mr 80,000 in bovine and 60,000 in chicken tissues; we have recently determined the primary sequences of these proteins and tentatively named them the myristoylated alanine-rich C kinase substrates. The proteins were purified to apparent homogeneity from bovine and chicken brains, phosphorylated with protein kinase C, digested with trypsin, and the phosphopeptides purified and sequenced. Four distinct phosphopeptides were identified from both the bovine and chicken proteins. Two of the phosphorylated serines were contained in the repeated motif FSFKK, one in the sequence LSGF, and one in the sequence SFK. All four sites were contained within a basic domain of 25 amino acids which was identical in the chicken and bovine proteins. All of the sites phosphorylated in the cell-free system appeared to be phosphorylated in intact cells; an additional site may have been present in the proteins from intact cells. The identity of the phosphorylation site domains from two proteins of overall 65% amino acid sequence identity suggests a potential role for this domain in the physiological function of the myristoylated alanine-rich C kinase substrate proteins.  相似文献   

6.
Ran X  Miao HH  Sheu FS  Yang D 《Biochemistry》2003,42(17):5143-5150
Neurogranin/RC3 is a neuron-specific, Ca(2+)-sensitive calmodulin binding protein and a specific protein kinase C substrate. Neurogranin may function to regulate calmodulin levels at specific sites in neurons through phosphorylation at serine residue within its IQ motif, oxidation outside the IQ motif, or changes in local cellular Ca(2+) concentration. To gain insight into the functional role of neurogranin in the regulation of calmodulin-dependent activities, we investigated the structure and dynamics of a full-length rat neurogranin protein with 78 amino acids using triple resonance NMR techniques. In the absence of calmodulin or PKC, neurogranin exists in an unfolded form as evidenced by high backbone mobility and the absence of long-range nuclear Overhauser effect (NOE). Analyses of the chemical shifts (13)C(alpha), (13)C(beta), and (1)H(alpha) reveal the presence of a local alpha-helical structure for the region between residues G25-A42. Three-bond (1)H(N)-(1)H(alpha) coupling constants support the finding that the sequence between residues G25 and A42 populates a non-native helical structure in the unfolded neurogranin. Homonuclear NOE results are consistent with the conclusions drawn from chemical shifts and coupling constants. (15)N relaxation data indicate motional restrictions on a nanosecond time scale in the region from D15 to S48. Spectral densities and order parameters data further confirm that the unfolded neurogranin exists in conformation with residual secondary structures. The medium mobility of the nascent helical region may help to reduce the entropy loss when neurogranin binds to its targets, but the complex between neurogranin and calmodulin is not stable enough for structural determination by NMR. Calmodulin titration of neurogranin indicates that residues D15-G52 of neurogranin undergo significant structural changes upon binding to calmodulin.  相似文献   

7.
The syntheses of a protein kinase C (PKC) peptide substrate, H-Lys-Arg-Thr-Leu-Arg-OH, and a phosphopeptide analog of the synthetic substrate, H-Lys-Arg-Thr(P)-Leu-Arg-OH, are reported. PKC phosphorylates the peptide with an apparent KM of 0.30 +/- 0.04 mM and an apparent Vmax equal to one-tenth that of histone III-S. The synthesis of the phosphopeptide features a recently developed convenient phosphorylation procedure for serine and threonine using N,N-diethylamino-dibenzylphosphoramidite. A complete characterization of the PKC substrate and its corresponding phosphopeptide by C-H COSY 2D n.m.r. is included.  相似文献   

8.
Apoprotein A-1 (apo A-1), the predominant protein constituent of high density lipoproteins (HDL), was phosphorylated by protein kinase C (PKC). Optimal phosphorylation of lipid-free apo A-1 occurs in the absence of calcium, phosphatidyl serine (PS), and diolein (DO). However, HDL-bound apo A-1 was not phosphorylated by PKC. Furthermore, addition of either native or reconstituted HDL particles to lipid-free apo A-1 resulted in a concentration-dependent inhibition of phosphorylation. It appears that the phosphorylatable sites on apo A-1 are involved in hydrophobic interaction with the lipids of HDL. Apo A-1 is a novel substrate of PKC because it does not require calcium and lipid cofactors for optimal phosphorylation.  相似文献   

9.
We have evaluated the possibility that a major, abundant cellular substrate for protein kinase C might be a calmodulin-binding protein. We have recently labeled this protein, which migrates on sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of 60,000 from chicken and 80,000-87,000 from bovine cells and tissues, the myristoylated alanine-rich C kinase substrate (MARCKS). The MARCKS proteins from both species could be cross-linked to 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of either protein by protein kinase C prevented 125I-calmodulin binding and cross-linking, suggesting that the calmodulin-binding domain might be located at or near the sites of protein kinase C phosphorylation. Both bovine and chicken MARCKS proteins contain an identical 25-amino acid domain that contains all 4 of the serine residues phosphorylated by protein kinase C in vitro. In addition, this domain is similar in sequence and structure to previously described calmodulin-binding domains. A synthetic peptide corresponding to this domain inhibited calmodulin binding to the MARCKS protein and also could be cross-linked to 125I-calmodulin in a calcium-dependent manner. In addition, protein kinase C-dependent phosphorylation of the synthetic peptide inhibited its binding and cross-linking to 125I-calmodulin. The peptide bound to fluorescently labeled 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with a dissociation constant of 2.8 nM, and inhibited the calmodulin-dependent activation of cyclic nucleotide phosphodiesterase with an IC50 of 4.8 nM. Thus, the peptide mimics the calmodulin-binding properties of the MARCKS protein and probably represents its calmodulin-binding domain. Phosphorylation of these abundant, high affinity calmodulin-binding proteins by protein kinase C in intact cells could cause displacement of bound calmodulin, perhaps leading to activation of Ca2+-calmodulin-dependent processes.  相似文献   

10.
SSeCKS is a major protein kinase C substrate which has tumour suppressor activity in models of src- and ras-induced oncogenic transformation. The mitogenic regulatory activity of SSeCKS is likely manifested by its ability to bind key signalling proteins such as protein kinases C and A and calmodulin, and to control actin-based cytoskeletal architecture. Rat SSeCKS shares extensive homology with human Gravin, an autoantigen in myasthenia gravis that encodes kinase scaffolding functions and whose expression pattern in fibroblasts and nerves suggests a role in cell motility. Here, we analyse the expression of SSeCKS and Gravin in rodent and human fibroblast and epithelial cell lines using antibodies specific or crossreactive for SSeCKS or Gravin. SSeCKS expression was then analysed in developing mouse embryos and in adult tissues. In the foetal mouse, early SSeCKS protein expression (E10–11) is focused in the loose mesenchyme, luminal surface of the neural tube, notochord, early heart and pericardium, urogenital ridge, and dorsal and ventral sections of limb buds. In later stages (E12–14), SSeCKS is widely expressed in mesenchymal cells but is absent in the spinal ganglia. By E15, SSeCKS expression is ubiquitous, although the staining pattern varies from being striated within smooth muscle sarcomeres to filamentous in mesenchymal and select epithelial cells. In the adult mouse, SSeCKS staining is relatively ubiquitous, with highest expression in the gonads, smooth and cardiac muscle, lung, brain and heart. High expression is also detected in fibroblasts and nerve fibres as well as in more specialized cells such as glomerular mesangial cells and testicular Sertoli cells. SSeCKS expression in the rat testes correlates with the induction of puberty, and in mature mouse spermatozoa, SSeCKS is found in peripheral acrosome membranes and in a helix-like winding pattern within the midsection. Periodic enrichments of SSeCKS are found in sperm midsections and in developing axons, suggesting a role in architectural infrastructure. As with Gravin, high SSeCKS expression is absent in most epithelial cells; however, in contrast to Gravin, SSeCKS is expressed in Purkinje cells, cardiac muscle, macrophages and hepatic stellate cells, indicating overlapping yet distinct patterns of tissue expression in the SSeCKS/Gravin family. The data suggest roles for SSeCKS in the control of cytoskeletal and tissue architecture, formation of migratory processes and cell migration during embryogenesis.  相似文献   

11.
Wood CD  Kelly AP  Matthews SA  Cantrell DA 《FEBS letters》2007,581(18):3494-3498
Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction.  相似文献   

12.
A rapid purification method is reported for bovine brain neurogranin, a calmodulin-binding protein kinase C (PKC) substrate. This method takes advantage of the fact that the protein remains soluble in 2.5% perchloric acid (PCA) and that it binds to a calmodulin-Sepharose column in the absence of calcium: Other PKC substrate proteins that remain to be identified were also found to share these two properties, suggesting that a class of calmodulin-binding PKC substrates may exist in the brain.  相似文献   

13.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

14.
p36, a major in vivo substrate of protein-tyrosine kinases, is shown to be phosphorylated at serine 25, a site very close to the major site of tyrosine phosphorylation by pp60v-src, tyrosine 23 (J. R. Glenney, Jr., and B. F. Tack, Proc. Natl. Acad. Sci. USA 82:7884-7888, 1985). We present evidence suggesting that protein kinase C mediates phosphorylation of serine 25.  相似文献   

15.
The peptide Leu-Asp-Asp-Ser-Lys-Arg-Val-Ala-Lys-Arg-Lys-Leu-Ile-Glu, which corresponds to sequence 124 to 137 of c-erb-A protein, was synthesized and tested as substrate for protein kinase C (PKC). Although a typical recognition sequence for PKC, consisting of a cluster of basic residues, is found on the C-terminus side of serine, its phosphorylation was totally prevented by the presence of the two acidic residues on the amino-terminus side. Three analogs in which aspartyl residues were successively replaced with alanine were studied and the influence of the acidic side chain in modulating phosphorylation by PKC was thus possible to determine. The results show that the presence of a single aspartyl residue located in positions i-1 or i-2 with respect to the phosphorylable residue can almost totally abolish the positive effect of a highly favorable cluster of basic residues. These observations highlight the role of negative substrate specificity determinants in settling the protein substrate profile of protein kinase C.  相似文献   

16.
Kang JH  Asai D  Yamada S  Toita R  Oishi J  Mori T  Niidome T  Katayama Y 《Proteomics》2008,8(10):2006-2011
The purpose of this study was to find protein kinase C (PKC) isozyme-specific peptides. A peptide library containing 1772 sequences was designed using Scansite and screened by MALDI-TOF MS and kinase activity assays for PKC isozyme-specificity. A peptide (Alphatomega; H-FKKQGSFAKKK-NH(2)) with high specificity for PKC alpha relative to other isozymes was identified. The peptide was phosphorylated to a greater extent by tissue lysates from B16 melanoma, HepG2, and human breast cancer, which had higher levels of activated PKC alpha, when compared to normal skin, liver, and human breast tissue lysates, respectively. Moreover, addition of Ro-31-7549, an inhibitor with great specificity for PKC alpha, to the phosphorylation reaction caused a dose-dependent reduction in phosphorylation, but no inhibition was identified with the addition of rottlerin and H-89. These results show that this peptide has great potential as a PKC alpha-specific substrate.  相似文献   

17.
Limited tryptic digestion of protein kinase C purified from mouse brain generated a 36-kDa fragment which no longer required Ca2+ and phospholipid for activity or bound phorbol ester. Under appropriate conditions, the isolated fragment was stable for several months at 4 degrees C or upon freezing and storage at -70 degrees C. Kinetic characteristics of the fragment were similar to those for the intact protein kinase. Although the fragment did not require phospholipid for activity, anionic phospholipids affected the extent of its activity in a pH-, substrate-, and substrate concentration-dependent manner. This effect appeared to be due to complex formation between the phospholipid and substrate. The catalytic fragment thus permits detection of a second point of interaction of phospholipid with the protein kinase C system in addition to the already described phospholipid regulatory domain.  相似文献   

18.
Phorbol dibutyrate (PDBu) induced the formation of podosome-like structures together with partial disassembly of actin stress fibers in A7r5 smooth muscle cells. These podosomes contained alpha-actinin, F-actin, and vinculin and exhibit a tubular, column-like structure arising perpendicularly from the bottom of PDBu-treated cells. The conventional protein kinase C (PKC) antagonist, GO6976, inhibited PDBu-induced cytoskeletal remodeling at 0.1 microM, whereas the novel PKC antagonist, rottlerin, was ineffective at 10 microM. PDBu induced the translocation of the conventional PKC-alpha but not the novel PKC-delta to the sites of podosome formation in A7r5 cells. Although partial disassembly of actin stress fibers was observed in both Y-27632- and PDBu-treated cells, focal adhesions were much reduced in number and size only in Y-27632-treated cells. Furthermore, PDBu restored focal adhesions in Y-27632-treated cells. Live video fluorescence microscopy of alpha-actinin GFP revealed a lag phase of about 20 min prior to the rapid formation and dynamic reorganization of podosomes during PDBu treatment. These findings suggest that conventional PKCs mediate PDBu-induced formation of dynamic podosome-like structures in A7r5 cells, and Rho-kinase is unlikely to be the underlying mechanism. The podosome columns could represent molecular scaffolds where PKC-alpha phosphorylates regulatory proteins necessary for Ca(2+) sensitization in smooth muscle cells.  相似文献   

19.
Protein kinase C (PKC)1 isozymes comprise a family of related cytosolic kinases that translocate to the cell particulate fraction on stimulation. The activated enzyme is thought to be on the plasma membrane. However, phosphorylation of protein substrates occurs throughout the cell and is inconsistent with plasma membrane localization. Using an isozyme-specific monoclonal antibody we found that, on activation, this PKC isozyme translocates to myofibrils in cardiac myocytes and to microfilaments in fibroblasts. Translocation of this activated PKC isozyme to cytoskeletal elements may explain some of the effects of PKC on cell contractility and morphology. In addition, differences in the translocation site of individual isozymes--and, therefore, phosphorylation of different substrates localized at these sites--may explain the diverse biological effects of PKC.  相似文献   

20.
Murine T cell differentiation antigen CD8 alpha (Lyt-2) is phosphorylated in vivo after phorbol 12-myristate 13-acetate (PMA) treatment of cells. Concanavalin A,dibutyryl cAMP and calcium ionophore are unable to stimulate phosphate incorporation into CD8 alpha. Depletion of cellular protein kinase C (PKC) by prolonged PMA treatment abolished this phosphorylation, suggesting that PKC is required for this effect. Using the amino acid sequence derived from cloning CD8 alpha, peptides encompassing both possible intracellular phosphorylation sites were made and used to test the ability of various kinases to phosphorylate CD8 alpha sequences. Only the proximal serine peptide was a kinase substrate, and of PKC, cAMP-dependent kinase and the multifunctional calcium/calmodulin-dependent kinase, only PKC was able to phosphorylate this peptide. These studies provide the first definitive evidence that CD8 alpha is a direct substrate of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号