首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series or γ- and δ-lactones could be found in the thermal oxidative products of normal saturated acids, aldehydes, and alcohols (C9, C10, and C12, respectively) heated at 180°C in the presence of 0.1% KMnO4. Their lactones were identified by gas chromatography, infrared spectroscopy, and mass spectroscopy. And they could be detected also in the volatile compounds occurred by heating of C10 acid, aldehyde, and alcohol mixed with pork fat. So it was expected that lactones in meat fat flavor described in the earlier papers could be secondary products converted from saturated acids, aldehydes, and alcohols formed by oxidative degradation of meat fats. This process was presumed to be one of the mechanisms of the lactone formation.

It was discussed that lactones might be derived through mono or dihydroperoxides of acids, aldehydes, and alcohols.  相似文献   

2.
The enantiomerically enriched γ- and δ-decalactones (4a and 4b) were prepared from corresponding racemic primary-secondary 1,4- and 1,5-diols (1a and 1b), as products of enzymatic oxidation catalyzed by different alcohol dehydrogenases. The results of biotransformations indicated that the oxidation processes catalyzed by alcohol dehydrogenase (HLADH), both isolated from horse liver and recombinant in Escherichia coli, were characterized by the highest degree of conversion with moderate enantioselectivity of the reaction. Useful, environmentally friendly extraction procedure of decalactones (4a and 4b) based on hydrodistillation using a Deryng apparatus was developed. Both racemic lactones (4a and 4b), as well as their enantiomerically enriched isomers, were tested for feeding deterrent activity against Myzus persicae. The effect of these compounds on probing, feeding and settling behavior of M. persicae was studied in vivo. The deterrent activity of decalactones (4a and 4b) against aphids depended on the size of the lactone ring and the enantiomeric purity of the compounds. δ-Decalactone (4b) appeared inactive against M. persicae while γ-decalactone (4a) restrained aphid probing at ingestional phase. Only (–)-(S)-γ-decalactone (4a) had strong and durable (i.e. lasting for at least 24 hours) limiting effect, expressed at phloem level.  相似文献   

3.
α-Methylene γ- and δ-lactones can be prepared in fair yields by a two step procedure involving formation of the α-hydroxymethylene or α-ethoxyoxalyl sodio derivatives of γ- or δ-lactones followed by their condensation with formaldehyde.  相似文献   

4.
We have attempted to develop an intraoral method which can measure the textural changes in foodstuffs during chewing by using electromyography (EMG). Forty-three foodstuffs with variable textural attributes were used.

Total chewing energy for these foodstuffs during chewing varied from 3 to 108 for the masseter muscle and 13 to 154 for the digastric muscle, respectively. Large differences in total chewing energy could be observed by EMG among the foodstuffs. The chewing energy for many foodstuffs revealed distinct differences throughout the chewing process. Foodstuffs could be categorized into six groups according to the changing patterns of chewing energy. EMG data and the number of strokes were influenced by masticatory index and salivary flow rate.  相似文献   

5.
A prokaryotic expression vector, pGEX-TIP, was constructed from Arabidopsis thaliana (L.) Heynh. Employing PCR, 205 bp fragment near 3' end of γ-TIP cDNA, which has specific aquaporin activity, was amplified and cloned into pGEX-KG. Restriction endonuclease analysis and sequencing confirmed the correct construction, and 0.4 mmoL/L IPTC can induce high expression of GST-TIP fused protein which was about 50% in total of E. coli proteins. The IPTG induced E. coli was collected and ]ysed by supersonic treatment. The fusion protein was mainly recovered as an inclusion body. The expressed GST-TIP was purified by SDS-PAGE according to their molecular weight, which was about 32 kD. The purified protein was used to immune rabbits directly or was electrophoretically eluted before it was used for immunization. The highly qualified antibody for GST-TIP was obtained, which provides a very useful protein probe for the research on localization and function of aquaporins.  相似文献   

6.
Enantiogenic microbiological reduction of acyclic 2,3-diketones readily yields enantiomeric or diastereoisomeric chiral diols with high enantiomeric excesses. Some α-hydroxyketones can also be isolated. Regardless of the substituents certain microorganisms always produce compounds with the same absolute configuration. Preliminary results concerning the mechanism of these reductions are presented.  相似文献   

7.
Abstract

The (+)-enantiomer of the carbocyclic analogs of the four 2′-deoxyribonucleoside monophosphate constituents of DNA, C-dAMP2 (1: A), C-dGMP (1: G), C-dCMP (1: C), and C-TMP (1: T) have been synthesized via the Mitsunobu coupling reaction. Two new N3-protected thymines were developed en route.  相似文献   

8.
With pig liver esterase, 1,3-dibenzyl-4,5-cis-bis(alkyloxycarbonyl)-2-oxoimidazolidine (1) was asymmetrically hydrolyzed to (4S,5R)-1,3-dibenzyl-5-alkyloxycarbonyl-2-oxoimidazolidine-4-carboxylic acid (2). This acid 2 was reduced with lithium borohydride to (4S,5R)-1,3-dibenzyl-5-hydroxymethyl-2-oxoimidazolidine-4-carboxylic acid lactone (3), which is known to be converted to (+)-biotin (4). With the same esterase, diethyl 3,4-dimethoxyphenylmethyl-(methyl)malonate (5) was asymmetrically hydrolyzed to (R)-ethyl hydrogen 3,4-dimethoxy-phenylmethyl(methyl)malonate (6), which can be converted to (S)-α-methyl-3,4-dihydroxyphenyl-alanine(l-α-methyldopa) (9).  相似文献   

9.
The β-, γ- and δ-kafirin genes were sequenced from 35 Sorghum genotypes to investigate the allelic diversity of seed storage proteins. A range of grain sorghums, including inbred parents from internationally diverse breeding programs and landraces, and three wild Sorghum relatives were selected to encompass an extensive array of improved and unimproved germplasm in the Eusorghum. A single locus exists for each of the expressed kafirin-encoding genes, unlike the multigenic α-kafirins. Significant diversity was found for each locus, with the cysteine-rich β-kafirin having four alleles, including the first natural null mutant reported for this prolamin subfamily. This allele contains a frame shift insertion at +206 resulting in a premature stop codon. SDS-PAGE revealed that lines with this allele do not produce β-kafirin. An analysis of flour viscosity reveals that these β-kafirin null lines have a difference in grain quality, with significantly lower viscosity observed over the entire Rapid ViscoAnalyser time course. There was less diversity at the protein level within the cysteine-rich γ-kafirin, with only two alleles in the cultivated sorghums. There were only two alleles for the δ-kafirin locus among the S. bicolor germplasm, with one allele encoding ten extra amino acids, of which five were methionine residues, with an additional methionine resulting from a nucleotide substitution. This longer allele encodes a protein with 19.1% methionine. The Asian species, S. propinquum, had distinct alleles for all three kafirin genes. We found no evidence for selection on the three kafirin genes during sorghum domestication even though the δ-kafirin locus displayed comparatively low genetic variation. This study has identified genetic diversity in all single copy seed storage protein genes, including a null mutant for β-kafirin in Sorghum.  相似文献   

10.
An efficient synthesis of racemic and both enantiomeric forms of heteroaryl substituted γ- and δ-lactone derivatives derived from allyl and homoallyl alcohol backbones has been accomplished via ring closing metathesis reaction. 2-Heteroaryl substituted allyl and homoallyl alcohols have been efficiently resolved through enzymatic method with high ee (97-99%) and known stereochemistry. Antimicrobial and antioxidant activities of target lactones were evaluated.  相似文献   

11.
Measurements of NMR spectra of β-aryl-α-thiopyruvic acids revealed that they exist dominantly in the form of trans cinnamic acid configuration. Geometrical configuration of 4-arylidene-1,3-oxathiolan-5-one was also determined to be trans in regard to aryl and carbonyl groups.  相似文献   

12.
α-Methylthio-cinnamic acid and its substituted analogues (III) were synthesized from their respective β-aryl-α-thiopyruvic acids (II). In connection with the study on the tautomeric ene-thiol structure of β-aryl-α-thiopyruvic acids (II), 4-arylidenerl,3-oxathiolan-5-one (IV) were prepared from compounds II.  相似文献   

13.
14.
Measurements of the singlet oxygen (1O2) quenching rates (kQ (S)) and the relative singlet oxygen absorption capacity (SOAC) values were performed for 11 antioxidants (AOs) (eight vitamin E homologues (α-, β-, γ-, and δ-tocopherols and -tocotrienols (-Tocs and -Toc-3s)), two vitamin E metabolites (α- and γ-carboxyethyl-6-hydroxychroman), and trolox) in ethanol/chloroform/D2O (50:50:1, v/v/v) and ethanol solutions at 35?°C. Similar measurements were performed for five palm oil extracts 1–5 and one soybean extract 6, which included different concentrations of Tocs, Toc-3s, and carotenoids. Furthermore, the concentrations (wt%) of Tocs, Toc-3s, and carotenoids included in extracts 1–6 were determined. From the results, it has been clarified that the 1O2-quenching rates (kQ (S)) (that is, the relative SOAC value) obtained for extracts 1–6 may be explained as the sum of the product {Σ kQAO-i (S) [AO-i]/100} of the rate constant (kQAO-i (S)) and the concentration ([AO-i]/100) of AO-i (Tocs, Toc-3s, and carotenoid) included.  相似文献   

15.
Laccase is a copper-containing phenoloxidase, involved in lignin degradation by white rot fungi. The laccase substrate range can be extended to include nonphenolic lignin subunits in the presence of a noncatalytic cooxidant such as 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), with ABTS being oxidized to the stable cation radical, ABTS·+, which accumulates. In this report, we demonstrate that the ABTS·+ can be efficiently reduced back to ABTS by physiologically occurring organic acids such as oxalate, glyoxylate, and malonate. The reduction of the radical by oxalate results in the formation of H2O2, indicating the formation of O2·− as an intermediate. O2·− itself was shown to act as an ABTS·+ reductant. ABTS·+ reduction and H2O2 formation are strongly stimulated by the presence of Mn2+, with accumulation of Mn3+ being observed. Additionally, 4-methyl-O-isoeugenol, an unsaturated lignin monomer model, is capable of directly reducing ABTS·+. These data suggest several mechanisms for the reduction of ABTS·+ which would permit the effective use of ABTS as a laccase cooxidant at catalytic concentrations.Lignin, the second most abundant renewable organic compound in the biosphere after cellulose, is highly recalcitrant, and therefore its biodegradation is a rate-limiting step in the global carbon cycle (9). White rot fungi have evolved a unique mechanism to accomplish this degradation, which utilizes extracellular enzymes to generate oxidative radical species (16). This degradative system is highly nonspecific, and as a consequence, these fungi can also oxidize a broad spectrum of structurally diverse environmental pollutants (4, 18). Three main groups of enzymes, i.e., lignin peroxidases (LiP), manganese peroxidases (MnP), and laccases, along with their low-molecular-weight cofactors, have been implicated in the lignin degradation process. LiP can oxidize the nonphenolic aromatic moieties that make up approximately 85% of the lignin polymer (21), while MnP uses the Mn2+/Mn3+ couple to oxidize phenolic subunits (19). Laccase, a copper-containing phenoloxidase, catalyzes the four-electron reduction of oxygen to water, and this is accompanied by the oxidation of a phenolic substrate (32).In recent years, however, the laccase substrate range has been extended to include nonphenolic lignin subunits in the presence of readily oxidizable primary substrates. These cooxidants have been denoted mediators because they were previously speculated (but not proven) to act as electron transfer mediators. The most extensively investigated laccase mediator is 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), a synthetic nitrogen-substituted aromatic compound which allows the oxidation of nonphenolic lignin model compounds (6) and the delignification of kraft pulp (8) by laccase. More recent work has also focused on an alternative compound, 1-hydroxybenzotriazole (7, 10). In the presence of these compounds, laccase can also catalyze the oxidation of polycyclic aromatic hydrocarbons (PAH) (12, 23), chemical synthesis (29), and textile dye bleaching (31). ABTS is oxidized by laccase to its corresponding cation radical. In the case of ABTS, the radical (ABTS·+) is highly stable, and it has been suggested that it may act as a diffusible oxidant of the enzyme (7). However, although the redox chemistry of ABTS (22) and its radical has been characterized, the mechanisms by which it interacts with laccase to “mediate” lignin oxidation are still unknown. Potthast et al. (28) have found evidence suggesting that ABTS acts as an activator or cooxidant of the enzyme. The observation that the laccase/ABTS couple can oxidize the nonphenolic veratryl alcohol, while ABTS·+ alone cannot (6), provides a further indication of this activator role for ABTS. If compounds such as ABTS do indeed act as cooxidants of the enzyme, it is necessary that some mechanism(s) exists for the recycling of their cation radicals back to their reduced forms so as to be available for subsequent catalytic cycles.A number of low-molecular-weight compounds have been implicated in the catalysis of MnP during the oxidation of lignin. The most important of these is manganese, which is present in virtually all woody tissues (17). Divalent manganese (Mn2+) is oxidized by the enzyme to the trivalent form (Mn3+), which is capable of oxidizing an extensive range of phenolic compounds (19). To catalyze lignin oxidation, Mn3+ is chelated and stabilized by organic acids, which facilitate its diffusion to act as an oxidant at a distance from the MnP active site (19, 33). A range of these acids are produced by ligninolytic fungi (25, 30, 33), but the most ubiquitous is oxalate, whose production at levels as high as 28 mM by cultures of Pleurotus ostreatus has been observed (1). Oxalate can itself be oxidized by Mn3+, producing the formate anion radical (CO2·−), which can then reduce molecular oxygen to produce superoxide (O2·−) (24), and a role for these radicals as reducing agents in lignin degradation has been suggested (24).In this report, evidence is presented indicating that physiologically occurring organic acids can directly reduce ABTS·+. The rate of reduction is highly stimulated by the presence of manganese, and the results indicate a mechanism involving O2·−.  相似文献   

16.
Disulfide formation in newly synthesized proteins entering the mammalian endoplasmic reticulum is catalyzed by protein disulfide isomerase (PDI), which is itself thought to be directly oxidized by Ero1α. The activity of Ero1α is tightly regulated by the formation of noncatalytic disulfides, which need to be broken to activate the enzyme. Here, we have developed a novel PDI oxidation assay, which is able to simultaneously determine the redox status of the individual active sites of PDI. We have used this assay to confirm that when PDI is incubated with Ero1α, only one of the active sites of PDI becomes directly oxidized with a slow turnover rate. In contrast, a deregulated mutant of Ero1α was able to oxidize both PDI active sites at an equivalent rate to the wild type enzyme. When the active sites of PDI were mutated to decrease their reduction potential, both were now oxidized by wild type Ero1α with a 12-fold increase in activity. These results demonstrate that the specificity of Ero1α toward the active sites of PDI requires the presence of the regulatory disulfides. In addition, the rate of PDI oxidation is limited by the reduction potential of the PDI active site disulfide. The inability of Ero1α to oxidize PDI efficiently likely reflects the requirement for PDI to act as both an oxidase and an isomerase during the formation of native disulfides in proteins entering the secretory pathway.  相似文献   

17.
Effects of fatty acids on translocation of the γ- and ε-subspecies of protein kinase C (PKC) in living cells were investigated using their proteins fused with green fluorescent protein (GFP). γ-PKC–GFP and ε-PKC–GFP predominated in the cytoplasm, but only a small amount of γ-PKC–GFP was found in the nucleus. Except at a high concentration of linoleic acid, all the fatty acids examined induced the translocation of γ-PKC–GFP from the cytoplasm to the plasma membrane within 30 s with a return to the cytoplasm in 3 min, but they had no effect on γ-PKC–GFP in the nucleus. Arachidonic and linoleic acids induced slow translocation of ε-PKC–GFP from the cytoplasm to the perinuclear region, whereas the other fatty acids (except for palmitic acid) induced rapid translocation to the plasma membrane. The target site of the slower translocation of ε-PKC–GFP by arachidonic acid was identified as the Golgi network. The critical concentration of fatty acid that induced translocation varied among the 11 fatty acids tested. In general, a higher concentration was required to induce the translocation of ε-PKC–GFP than that of γ-PKC–GFP, the exceptions being tridecanoic acid, linoleic acid, and arachidonic acid. Furthermore, arachidonic acid and the diacylglycerol analogue (DiC8) had synergistic effects on the translocation of γ-PKC–GFP. Simultaneous application of arachidonic acid (25 μM) and DiC8 (10 μM) elicited a slow, irreversible translocation of γ-PKC– GFP from the cytoplasm to the plasma membrane after rapid, reversible translocation, but a single application of arachidonic acid or DiC8 at the same concentration induced no translocation.These findings confirm the involvement of fatty acids in the translocation of γ- and ε-PKC, and they also indicate that each subspecies has a specific targeting mechanism that depends on the extracellular signals and that a combination of intracellular activators alters the target site of PKCs.  相似文献   

18.
Abstract γ-Secretase is a membrane-embedded protease complex with presenilin as the catalytic component. Cleavage within the transmembrane domain of the amyloid β-protein precursor (APP) by γ-secretase produces the C-terminus of the amyloid β-peptide (Aβ), a proteolytic product prone to aggregation and strongly linked to Alzheimer's disease (AD). Presenilin mutations are associated with early-onset AD, but their pathogenic mechanisms are unclear. One hypothesis is that these mutations cause AD through a toxic gain of function, changing γ-secretase activity to increase the proportion of 42-residue Aβ over the more soluble 40-residue form. A competing hypothesis is that the mutations cause AD through a loss of function, by reducing γ-secretase activity. However, γ-secretase apparently has two types of activities, an endoproteolytic function that first cuts APP to generate a 48/49-residue form of Aβ, and a carboxypeptidase activity that processively trims these longer Aβ intermediates approximately every three residues to form shorter, secreted forms. Recent studies suggest a resolution of the gain-of-function vs. loss-of-function debate: presenilin mutations may increase the proportion of longer, more aggregation-prone Aβ by specifically decreasing the trimming activity of γ-secretase. That is, the reduction of this particular proteolytic function of presenilin, not its endoproteolytic activity, may lead to the neurotoxic gain of function.  相似文献   

19.
20.
The ATP dipbosphohydrolase (EC 3.6.1.5) from pig pancreas hydrolyzes triphospho- and diphosphonucleosides. The reaction products of ATP hydrolysis are ADP, AMP and orthophosphate, but AMP accumulates at a faster rate than ADP. A time-course study showed a simultaneous breakdown of ATP and ADP with initial rates for ATP and ADP hydrolysis of 2.1 and 3.8μmol/min per mg protein, respectively. However, the rates reached similar values toward the end of the incubation period. According to double reciprocal plots and Dixon plots, the Km values for ATP and ADP are similar, Vmax for ADP hydrolysis is twice the Vmax for ATP hydrolysis and both nucleotides are competitive inhibitors of the other with their Ki values similar to their Km. These results are consistent with a sequential hydrolysis of the two diphosphoester bonds of ATP: ATP first binds to the enzyme, its γ-phosphate group is hydrolyzed and released, resulting in an enzyme-ADP complex which either breaks down to free enzyme and ADP or is further processed via hydrolysis of the β-phosphate group, releasing free enzyme, AMP and Pi. The experimental data showed that the processing step is favored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号