首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attachment, or cohesion, between sister chromatids is essential for their proper segregation in mitosis and meiosis [1,2]. Sister chromatids are tightly apposed at their centromeric regions, but it is not known whether this is due to cohesion at the functional centromere or at flanking centric heterochromatin. The Drosophila MEI-S332 protein maintains sister-chromatid cohesion at the centromeric region [3]. By analyzing MEI-S332's localization requirements at the centromere on a set of minichromosome derivatives [4], we tested the role of heterochromatin and the relationship between cohesion and kinetochore formation in a complex centromere of a higher eukaryote. The frequency of MEI-S332 localization is decreased on minichromosomes with compromised inheritance, despite the consistent presence of two kinetochore proteins. Furthermore, MEI-S332 localization is not coincident with kinetochore outer-plate proteins, suggesting that it is located near the DNA. We conclude that MEI-S332 localization is driven by the functional centromeric chromatin, and binding of MEI-S332 is regulated independently of kinetochore formation. These results suggest that in higher eukaryotes cohesion is controlled by the functional centromere, and that, in contrast to yeast [5], the requirements for cohesion are separable from those for kinetochore assembly.  相似文献   

2.
The centromere is a key region for cell division where the kinetochore assembles, recognizes and attaches to microtubules so that each sister chromatid can segregate to each daughter cell. The centromeric chromatin is a unique rigid chromatin state promoted by the presence of the histone H3 variant CENP-A, in which epigenetic histone modifications of both heterochromatin or euchromatin states and associated protein elements are present. Although DNA sequence is not regarded as important for the establishment of centromere chromatin, it has become clear that this structure is formed as a result of a highly regulated epigenetic event that leads to the recruitment and stability of kinetochore proteins. We describe an integrative model for epigenetic processes that conform regional chromatin interactions indispensable for the recruitment and stability of kinetochore proteins. If alterations of these chromatin regions occur, chromosomal instability is promoted, although segregation may still take place.  相似文献   

3.
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.  相似文献   

4.
The eukaryote centromere was initially defined cytologically as the primary constriction on vertebrate chromosomes and functionally as a chromosomal feature with a relatively low recombination frequency. Structurally, the centromere is the foundation for sister chromatid cohesion and kinetochore formation. Together these provide the basis for interaction between chromosomes and the mitotic spindle, allowing the efficient segregation of sister chromatids during cell division. Although centromeric (CEN) DNA is highly variable between species, in all cases the functional centromere forms in a chromatin domain defined by the substitution of histone H3 with the centromere specific H3 variant centromere protein A (CENP-A), also known as CENH3. Kinetochore formation and function are dependent on a variety of regional epigenetic modifications that appear to result in a loop chromatin conformation providing exterior CENH3 domains for kinetochore construction, and interior heterochromatin domains essential for sister chromatid cohesion. In addition pericentric heterochromatin provides a structural element required for spindle assembly checkpoint function. Advances in our understanding of CENH3 biology have resulted in a model where kinetochore location is specified by the epigenetic mark left after dilution of CENH3 to daughter DNA strands during S phase. This results in a self-renewing and self-reinforcing epigenetic state favorable to reliably mark centromere location, as well as to provide the optimal chromatin configuration for kinetochore formation and function.  相似文献   

5.
《Epigenetics》2013,8(7):672-675
The kinetochore is formed on centromeric DNA as a key interface with microtubules from the mitotic spindle to achieve accurate chromosome segregation during mitosis. However, in contrast to other regions of the chromosome, the position of the kinetochore is specified by sequence-independent epigenetic mechanisms. Most recent work on kinetochore specification has focused on the centromere-specific histone H3-variant CENP-A. Whereas CENP-A is an important epigenetic marker for the kinetochore specification, it is unclear how centromeric chromatin structure is organized. To understand centromeric chromatin structure, we focused on additional centromere proteins that have an intrinsic DNA binding activity and identified the DNA binding CENP-T-W-S-X complex. Tetramer formation of CENP-T-W-S-X is essential for functional kinetochore assembly in vertebrate cells. Our structural and biochemical analysis reveals that the CENP-T-W-S-X complex is composed of four histone-fold domains with structural similarity to nucleosomes and displays DNA supercoiling activity. These results suggest that the CENP-T-W-S-X complex forms a unique nucleosome-like structure at centromeric chromatin. In addition, CENP-S and CENP-X function at non-centromeric sites. The intriguing histone-like properties of these proteins suggest that they may form nucleosome-like structures at various genome loci, extending the chromatin code beyond classical histone variants.  相似文献   

6.
Fidelity during chromosome segregation is essential to prevent aneuploidy. The proteins and chromatin at the centromere form a unique site for kinetochore attachment and allow the cell to sense and correct errors during chromosome segregation. Centromeric chromatin is characterized by distinct chromatin organization, epigenetics, centromere-associated proteins and histone variants. These include the histone H3 variant centromeric protein A (CENPA), the composition and deposition of which have been widely investigated. Studies have examined the structural and biophysical properties of the centromere and have suggested that the centromere is not simply a 'landing pad' for kinetochore formation, but has an essential role in mitosis by assembling and directing the organization of the kinetochore.  相似文献   

7.
8.
Thakur J  Sanyal K 《PLoS genetics》2012,8(4):e1002661
Unlike most eukaryotes, a kinetochore is fully assembled early in the cell cycle in budding yeasts Saccharomyces cerevisiae and Candida albicans. These kinetochores are clustered together throughout the cell cycle. Kinetochore assembly on point centromeres of S. cerevisiae is considered to be a step-wise process that initiates with binding of inner kinetochore proteins on specific centromere DNA sequence motifs. In contrast, kinetochore formation in C. albicans, that carries regional centromeres of 3-5 kb long, has been shown to be a sequence independent but an epigenetically regulated event. In this study, we investigated the process of kinetochore assembly/disassembly in C. albicans. Localization dependence of various kinetochore proteins studied by confocal microscopy and chromatin immunoprecipitation (ChIP) assays revealed that assembly of a kinetochore is a highly coordinated and interdependent event. Partial depletion of an essential kinetochore protein affects integrity of the kinetochore cluster. Further protein depletion results in complete collapse of the kinetochore architecture. In addition, GFP-tagged kinetochore proteins confirmed similar time-dependent disintegration upon gradual depletion of an outer kinetochore protein (Dam1). The loss of integrity of a kinetochore formed on centromeric chromatin was demonstrated by reduced binding of CENP-A and CENP-C at the centromeres. Most strikingly, Western blot analysis revealed that gradual depletion of any of these essential kinetochore proteins results in concomitant reduction in cellular protein levels of CENP-A. We further demonstrated that centromere bound CENP-A is protected from the proteosomal mediated degradation. Based on these results, we propose that a coordinated interdependent circuitry of several evolutionarily conserved essential kinetochore proteins ensures integrity of a kinetochore formed on the foundation of CENP-A containing centromeric chromatin.  相似文献   

9.
10.
The centromere is the region of the chromosome where the kinetochore forms. Kinetochores are the attachment sites for spindle microtubules that separate duplicated chromosomes in mitosis and meiosis. Kinetochore formation depends on a special chromatin structure containing the histone H3 variant CENP-A. The epigenetic mechanisms that maintain CENP-A chromatin throughout the cell cycle have been studied extensively but little is known about the mechanism that targets CENP-A to naked centromeric DNA templates. In a recent report published in Science, such de novo centromere assembly of CENP-A is shown to be dependent on heterochromatin and the RNA interference pathway.  相似文献   

11.
Kinetochores mediate chromosome attachment to the mitotic spindle to ensure accurate chromosome segregation. Budding yeast is an excellent organism for kinetochore assembly studies because it has a simple defined centromere sequence responsible for the localization of >65 proteins. In addition, yeast is the only organism where a conditional centromere is available to allow studies of de novo kinetochore assembly. Using a conditional centromere, we found that yeast kinetochore assembly is not temporally restricted and can occur in both G1 phase and prometaphase. We performed the first investigation of kinetochore assembly in the absence of the centromeric histone H3 variant Cse4 and found that all proteins tested depend on Cse4 to localize. Consistent with this observation, Cse4-depleted cells had severe chromosome segregation defects. We therefore propose that yeast kinetochore assembly requires both centromeric DNA specificity and centromeric chromatin.  相似文献   

12.
13.
The role of heterochromatin in centromere function   总被引:7,自引:0,他引:7  
Chromatin at centromeres is distinct from the chromatin in which the remainder of the genome is assembled. Two features consistently distinguish centromeres: the presence of the histone H3 variant CENP-A and, in most organisms, the presence of heterochromatin. In fission yeast, domains of silent "heterochromatin" flank the CENP-A chromatin domain that forms a platform upon which the kinetochore is assembled. Thus, fission yeast centromeres resemble their metazoan counterparts where the kinetochore is embedded in centromeric heterochromatin. The centromeric outer repeat chromatin is underacetylated on histones H3 and H4, and methylated on lysine 9 of histone H3, which provides a binding site for the chromodomain protein Swi6 (orthologue of Heterochromatin Protein 1, HP1). The remarkable demonstration that the assembly of repressive heterochromatin is dependent on the RNA interference machinery provokes many questions about the mechanisms of this process that may be tractable in fission yeast. Heterochromatin ensures that a high density of cohesin is recruited to centromeric regions, but it could have additional roles in centromere architecture and the prevention of merotely, and it might also act as a trigger for kinetochore assembly. In addition, we discuss an epigenetic model for ensuring that CENP-A is targeted and replenished at the kinetochore domain.  相似文献   

14.
15.
Centromeric alpha satellite DNA sequences are linked to the kinetochore CENP-B proteins and therefore may be involved in the centromeric function. The high heterogeneity of size of the alphoid blocks raises the question of whether small amount of alphoid DNA or "deletion" of this block may have a pathological significance in the human centromere. In the present study, we analysed the correlation between size variations of alphoid DNA and kinetochore sizes in human chromosome 21 by molecular cytogenetic and immunochemical techniques. FISH analyses of alpha satellite DNA sizes in chromosome 21 homologues correlated well with the variation of their physical size as determined by pulsed field gel electrophoresis (PFGE). By contrast, the immunostaining study of the same homologous chromosomes with antikinetochore antibodies suggested that there is no positive correlation between the alpha satellite DNA block and kinetochore sizes. FISH analysis of chromosome 21-specific alphoid DNA and immunostaining of kinetochore extended interphase chromatin fibers indicate that centromeric kinetochore-specific proteins bind to restricted areas of centromeric DNA arrays. Thus, probably, restricted regions of centromeric DNA play an important role in kinetochore formation, centromeric function and abnormal chromosome segregation leading to non-disjunction.  相似文献   

16.
《The Journal of cell biology》1996,134(5):1097-1107
A study of the distribution of Topoisomerase II alpha (Topo II) in cells of six tissue culture cell lines, human (HeLa), mouse (L929), rat, Indian muntjac, rat kangaroo (PTK-2), and wallaby revealed the following features: (1) There is a cell cycle association of a specific population of Topo II with the centromere. (2) The centromere is distinguished from the remainder of the chromosome by the intensity of its Topo II reactivity. (3) The first appearance of a detectable population of Topo II at the centromere varies between species but is correlated with the onset of centromeric heterochromatin condensation. (4) Detectable centromeric Topo II declines at the completion of cell division. (5) The distribution pattern of Topo II within the centromere is species- and stage-specific and is conserved only within the kinetochore domain. In addition, we report that the Topo II inhibitor ICRF-193 can prevent the normal accumulation of Topo II at the centromere. This results in the disruption of chromatin condensation sub-adjacent to the kinetochore as well as the perturbation of kinetochore structure. Taken together, our studies indicate that the distribution of Topo II at the centromere is unlike that reported for the remainder of the chromosome and is essential for proper formation of centromere/kinetochore structure.  相似文献   

17.
Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.  相似文献   

18.
The kinetochore is an enhancer of pericentric cohesin binding   总被引:2,自引:1,他引:1       下载免费PDF全文
The recruitment of cohesins to pericentric chromatin in some organisms appears to require heterochromatin associated with repetitive DNA. However, neocentromeres and budding yeast centromeres lack flanking repetitive DNA, indicating that cohesin recruitment occurs through an alternative pathway. Here, we demonstrate that all budding yeast chromosomes assemble cohesin domains that extend over 20–50 kb of unique pericentric sequences flanking the conserved 120-bp centromeric DNA. The assembly of these cohesin domains requires the presence of a functional kinetochore in every cell cycle. A similar enhancement of cohesin binding was also observed in regions flanking an ectopic centromere. At both endogenous and ectopic locations, the centromeric enhancer amplified the inherent levels of cohesin binding that are unique to each region. Thus, kinetochores are enhancers of cohesin association that act over tens of kilobases to assemble pericentric cohesin domains. These domains are larger than the pericentric regions stretched by microtubule attachments, and thus are likely to counter microtubule-dependent forces. Kinetochores mediate two essential segregation functions: chromosome movement through microtubule attachment and biorientation of sister chromatids through the recruitment of high levels of cohesin to pericentric regions. We suggest that the coordination of chromosome movement and biorientation makes the kinetochore an autonomous segregation unit.  相似文献   

19.
The centromere is an essential chromatin domain required for kinetochore recruitment and chromosome segregation in eukaryotes. To perform this role, centro-chromatin adopts a unique structure that provides access to kinetochore proteins and maintains stability under tension during mitosis. This is achieved by the presence of nucleosomes containing the H3 variant CENP-A, which also acts as the epigenetic mark defining the centromere. In this review, we discuss the role of CENP-A on the structure and dynamics of centromeric chromatin. We further discuss the impact of the CENP-A binding proteins CENP-C, CENP-N, and CENP-B on modulating centro-chromatin structure. Based on these findings we provide an overview of the higher order structure of the centromere.  相似文献   

20.
In plants, as in all eukaryotes, centromeres are chromatin domains that govern the transmission of nuclear chromosomes to the next generation of cells/individuals. The DNA composition and sequence organization of centromeres has recently been elucidated for a few plant species. Although there is little sequence conservation among centromeres, they usually contain tandem repeats and retroelements. The occurrence of neocentromeres reinforces the idea that the positions of centromeres are determined epigenetically. In contrast to centromeric DNA, structural and transient kinetochoric proteins are highly conserved among eukaryotes. Candidate sequences have been identified for a dozen putative kinetochore protein homologues, and some have been localized to plant centromeres. The kinetochore protein CENH3, which substitutes histone H3 within centromeric nucleosomes, co-immunoprecipitates preferentially with centromeric sequences. The mechanism(s) of centromere assembly and the functional implication of (peri-)centromeric modifications of chromatin remain to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号