首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
NADPH reduced rabbit liver microsomal enzymes catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) to produce CF2CHCl and CF3CH2Cl. Anaerobic dehalogenation was optimal at pH7.4 and was blocked by either oxygen or carbon monoxide. The degree of inhibition of anaerobic dehalogenation by carbon monoxide was closely correlated to the proportion of carbon monoxide complex of cytochrome P450. Anaerobic dehalogenation was enhanced by pretreatment of the animals with phenobarbital but not with methylcholanthrene.  相似文献   

2.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

3.
The source of the hydrogen atoms in reduced metabolites of carbon tetrachloride and halothane has been studied. This was approached by measuring deuterium incorporation into chloroform and 2-chloro-1,1,1-trifluoroethane formed as microsomal metabolites of carbon tetrachloride and halothane, respectively, in a medium enriched in deuterium oxide. GC/MS analysis showed no deuterium enrichment of chloroform when hepatic microsomal fractions from control rats were used; however, small increases in enrichment were seen when microsomes from phenobarbitalor benzpyrene-treated rats were employed. No detectable deuterium incorporation into 2-chloro-1,1,1-trifluoroethane was observed. These results suggest that carbanions are not formed as major intermediates and suggest that one-electron transfer reactions predominate in the reductive metabolism of carbon tetrachloride and halothane.  相似文献   

4.
A simple and sensitive gas chromatographic method for the determination of 2-chloro-1, 1-difluoroethylene (CDE) and 2-chloro-1,1,1-trifluoroethane (CTE), two highly volatile metabolites of halothane, in blood, liver and isolated hepatic microscomes is described. The entire head-space in equilibrium with a known volume or weight of the sample is injected into the gas chromatograph equipped with a flame ionization detector. Quantification is accomplished with standards prepared by fortifying blank samples with known concentrations of CDE and CTE which are treated under the same conditions as the samples. Detection limits for CDE and CTE were 2 pmole/ml in blood and 10 pmole/g in liver and the mean relative standard deviations are no greater than ± 6% except for CTE in hepatic microsomes (± 9%). A preliminary study of blood CDE and CTE levels in humans anesthetized with halothane is reported.  相似文献   

5.
Cytochrome P-450 from liver microsomes of phenobarbital-treated rabbits catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) when combined with NADPH and NADPH-cytochrome P-450 reductase. Cytochromes P-450B1 and P-448 from liver microsomes of untreated rabbits were less active. Triton X-100 accelerated the reaction. Unlike anaerobic dehalogenation of halothane in microsomes, the major product was 2-chloro-1,1,1-trifluoroethane and 2-chloro-1,1-difluoroethylene was negligible. These products were not detected under aerobic conditions, and dehalogenation activity was inhibited by carbon monoxide, phenyl isocyanide and metyrapone.  相似文献   

6.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

7.
Two central redox enzyme systems exist to reduce eukaryotic P450 enzymes, the P450 oxidoreductase (POR) and the cyt b5 reductase–cyt b5. In fungi, limited information is available for the cyt b5 reductase–cyt b5 system. Here we characterized the kinetic mechanism of (cyt b5r)–cyt b5 redox system from the model white-rot fungus Phanerochaete chrysosporium (Pc) and made a quantitative comparison to the POR system. We determined that Pc-cyt b5r followed a “ping-pong” mechanism and could directly reduce cytochrome c. However, unlike other cyt b5 reductases, Pc-cyt b5r lacked the typical ferricyanide reduction activity, a standard for cyt b5 reductases. Through co-expression in yeast, we demonstrated that the Pc-cyt b5r–cyt b5 complex is capable of transferring electrons to Pc-P450 CYP63A2 for its benzo(a)pyrene monooxygenation activity and that the efficiency was comparable to POR. In fact, both redox systems supported oxidation of an estimated one-third of the added benzo(a)pyrene amount. To our knowledge, this is the first report to indicate that the cyt b5r–cyt b5 complex of fungi is capable of transferring electrons to a P450 monooxygenase. Furthermore, this is the first eukaryotic quantitative comparison of the two P450 redox enzyme systems (POR and cyt b5r–cyt b5) in terms of supporting a P450 monooxygenase activity.  相似文献   

8.
The presence of cytochromes b5, P-450 and P-420 and activities of NADH- and NADPH-cytochrome c reductases were determined in plasma membranes isolated from microvilli of the chick and rat intestinal epithelium and erythrocyte membranes from chick, rat and man. The results are compared with the amounts of these components found in microsomal fractions from intestinal epithelium and in nuclear membranes from chick erythrocytes. Plasma membranes from intestinal microvilli and from erythrocytes contained significant amounts of NADH-cytochrome c reductase activity and of a pigment spectrophotometrically indistinguishable from rat liver microsomal cytochrome b5. In addition, cytochrome b5 fragments were prepared from the membranes by limited trypsin digestion and consisted of two to four components with Mr values in the range 10 000–13 500. In low-temperature difference spectra, the presence of a second cytochrome was noted which was similar to cytochrome P-420. Cytochrome P-450 and NADPH-cytochrome c reductase activities were not detected in plasma membrane fractions in significant concentrations but were present in the corresponding endomembrane fractions. These findings in highly purified, well defined plasma membrane fractions, in which contamination by endomembranes is minimal, strengthen the evidence for the existence of cytochrome-containing redox systems in plasma membranes of various cells and suggest that such redox components are general components of the cell surface. Possible functions and origins of these redox components in plasma membranes are discussed.  相似文献   

9.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

10.
We have shown earlier that microsomal cytochrome b 5 can form a specific complex with mitochondrial cytochrome P450 (cytochrome P450scc). The formation of the complex between these two heme proteins was proved spectrophotometrically, by affinity chromatography on immobilized cytochrome b 5, and by measuring the cholesterol side-chain cleavage activity of cytochrome P450scc in a reconstituted system in the presence of cytochrome b 5. To further study the mechanism of interaction of these heme proteins and evaluate the role of negatively charged amino acid residues Glu42, Glu48, and Asp65 of cytochrome b 5, which are located at the site responsible for interaction with electron transfer partners, we used sitedirected mutagenesis to replace residues Glu42 and Glu48 with lysine and residue Asp65 with alanine. The resulting mutant forms of cytochrome b 5 were expressed in E. coli, and full-length and truncated forms (shortened from the C-terminal sequence due to cleavage of 40 amino acid residues) of these cytochrome b 5 mutants were purified. Addition of the truncated forms of cytochrome b 5 (which do not contain the hydrophobic C-terminal sequence responsible for interaction with the membrane) to the reconstituted system containing cytochrome P450scc caused practically no stimulation of catalytic activity, indicating an important role of the hydrophobic fragment of cytochrome b 5 in its interaction with cytochrome P450scc. However, full-length cytochrome b 5 and the full-length Glu48Lys and Asp65Ala mutant forms of cytochrome b 5 stimulated the cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc by 100%, suggesting that residues Glu48 and Asp65 of cytochrome b 5 are not directly involved in its interaction with cytochrome P450scc. The replacement of Glu42 for lysine, however, made the Glu42Lys mutant form of cytochrome b 5 about 40% less effective in stimulation of the cholesterol side-chain cleavage activity of cytochrome P450scc, indicating that residue Glu42 of cytochrome b 5 is involved in electrostatic interactions with cytochrome P450scc. Residues Glu42 and Glu48 of cytochrome b 5 appear to participate in electrostatic interaction with microsomal type cytochrome P450.  相似文献   

11.
Cytochrome b5 (b5) has been shown to modulate many cytochrome P450 (CYP)-dependent reactions. In order to elucidate the mechanism of such modulations, it is necessary to evaluate not only the effect of native b5 on CYP-catalyzed reactions, but also that of the apo-cytochrome b5 (apo-b5). Therefore, the apo-b5 protein was prepared using a heterologous expression in Escherichia coli. The gene for rabbit b5 was constructed from synthetic oligonucleotides using polymerase chain reaction (PCR), cloned into pUC19 plasmid and amplified in DH5α cells. The gene sequence was verified by DNA sequencing. The sequence coding b5 was cleaved from pUC19 by NdeI and XhoI restriction endonucleases and subcloned to the expression vector pET22b. This vector was used to transform E. coli BL-21 (DE3) Gold cells by heat shock. Expression of b5 was induced with isopropyl β-d-1-thiogalactopyranoside (IPTG). The b5 protein, produced predominantly in its apo-form, was purified from isolated membranes of E. coli cells by chromatography on a column of DEAE–Sepharose. Using such procedures, the homogenous preparation of apo-b5 protein was obtained. Oxidized and reduced forms of the apo-b5 reconstituted with heme exhibit the same absorbance spectra as native b5. The prepared recombinant apo-b5 reconstituted with heme can be reduced by NADPH:CYP reductase. The reconstituted apo-b5 is also fully biologically active, exhibiting the comparable stimulation effect on the CYP3A4 enzymatic activity towards oxidation of 1-phenylazo-2-hydroxynaphthalene (Sudan I) as native rabbit and human b5.  相似文献   

12.
Thermotropic properties of purified cytochrome c1 and cytochrome c have been studied by differential scanning calorimetry under various conditions. Both cytochromes exhibit a single endothermodenaturation peak in the differential scanning calorimetric thermogram. Thermodenaturation temperatures are ionic strength, pH, and redox state dependent. The ferrocytochromes are more stable toward thermodenaturation than the ferricytochromes. The enthalpy changes of thermodenaturation of ferro- and ferricytochrome c1 are markedly dependent on the ionic strength of the solution. The effect of the ionic strength of solution on the enthalpy change of thermodenaturation of cytochrome c is rather insignificant. The formation of a complex between cytochromes c and c1 at lower ionic strength causes a significant destabilization of the former and a slight stabilization of the latter. The destabilization of cytochrome c upon mixing with cytochrome c1 was also observed at high ionic strength, under which conditions no stable complex was detected by physical separation. This suggests formation of a transient complex between these two cytochromes. When cytochrome c was complexed with phospholipids, no change in the thermodenaturation temperature was observed, but a great increase in the enthalpy change of thermodenaturation resulted.  相似文献   

13.
Trichosporon cutaneum metabolizes glucose purely oxidatively and cytochrome P450 was not detected in the reduced CO-difference spectrum of whole cells. However, in the isolated microsomal fraction the corresponding monooxygenase was present as shown by the appearence of cytochrome P450, NADPH-cytochrome c (P450) reductase and cytochrome b5. The absorption maximum of the terminal oxidase in the reduced CO-difference spectrum shifted between 447 and 448 nm. Derepression of biosynthesis of all components was achieved by transition of the cells from carbon- to oxygen-limited growth in continuous culture. The monooxygenase exhibited aminopyrine demethylation activity but not -hydroxylation activity of lauric acid. With respect to the growth limiting nutrient (carbon and oxygen respectively), mitochondrial cytochrome content showed an analogous behavior as cytochrome P450 and cytochrome b5.  相似文献   

14.
Different forms of cytochrome P-450 from untreated male rats were simultaneously purified to homogeneity using the HPLC technique. The absorption maximum, molecular weight, NH2-terminal sequence and catalytic activity of them were determined. The NH2-terminal sequences of six forms of cytochrome P-450 (designated P450 UT-1, UT-2, UT-4, UT-5, UT-7 and UT-8) indicate that these cytochrome P-450 isozymes are of different molecular species. The hydrophobicity values of the NH2-terminal sequences of P450 UT-1 and P450 UT-8 were lower than that of other forms. P450 UT-8 has the highest molecular weight, 54 000, of the six forms of P-450. P450 UT-2 was active in demethylation of benzphetmaine, 450 UT-4 was active in the metabolism of 7-ethoxycoumarin and p-nitroanisole. P450 UT-1 ad P450 UT-2 were active in the 2α- and 16α-hydroxylation of testosterone, whereas P450 UT-4 was active in the 6β-, 7α- and 15α-hydroxylation of the same steroid. We believe that P450 UT-1, P450 UT-7 and P450 UT-8 are as yet unrecognized forms of cytochrome P-450.  相似文献   

15.
Cytochrome P-450CAM was shown to be the primary catalyst mediating reductive dehalogenation of polychlorinated ethanes byPseudomonas putida G786. Under anaerobic conditions, the enzyme catalyzed reductive elimination reactionsin vivo with the substrates hexachloroethane, pentachloroethane, and 1,1,1,2-tetrachloroethane; the products were tetrachloroethylene, trichloroethylene, and 1,1-dichloroethylene, respectively.In vivo reaction rates were determined. No reaction was observed with 1,1,2,2-tetrachloroethane or 1,1,1-trichloroethane. Purified cytochrome P-450CAM was used to measure dissociation constants of polychlorinated ethanes for the enzyme active site. Observed rates and dissociation constants were used to predict the course of a reaction with the three substrates simultaneously. Data obtained from experiments withP. putida G786 generally followed the simulated reaction curves. Oxygen suppressed the reductive dechlorination reactions and, in the case of 1,1,1,2-tetrachloroethane, 2,2,2-trichloroacetaldehyde was formed. Significant rates of reductive dechlorination were observed at 5% oxygen suggesting that these reactions could occur under partially aerobic conditions. These studies highlight the potential to use an aerobic bacterium,P. putida G786, under a range of oxygen tensions to reductively dehalogenate mixed wastes which are only degraded at very low rates by obligately anaerobic bacteria.Abbreviations GC/MS Gas chromatography/mass spectrometry - P-450CAM Cytochrome m of the camphor oxidizing system ofP. putida - pca Polychlorinated ethane  相似文献   

16.
We reported previously that Ascaris suum cytochrome b5, specifically expressed in this nematode at the adult stage and dually localized in extracellular perienteric fluid and hypodermis, is involved in both perienteric NADH-methemoglobin and cytosolic NADH-metmyoglobin reduction, where cytochrome b5 functions as an electron carrier between NADH-mediated cytochrome b5 reductase and substrates, methemo(myo)globins to reduce the nonfunctional globins back to functional ferrous hemo(myo)globins. To further characterize NADH-methemo(myo)globin reductase systems, the midpoint potentials of A. suum perienteric hemoglobin and body wall myoglobin, as well as the affinities of Ascaris methemoglobin and metmyoglobin toward cytochrome b5, were evaluated using potentiometric titration and surface plasmon resonance techniques, respectively. Midpoint potentials of + 7.2 mV and + 19.5 mV were obtained for Ascaris perienteric hemoglobin and body wall myoglobin, respectively. The affinities of Ascaris perienteric methemoglobin and body wall metmyoglobin toward the nematode cytochrome b5 were comparable to that for mammalian hemoglobin and cytochrome b5; association constants were 0.585 × 103 M− 1 and 2.32 × 103 M− 1, respectively, with rapid equilibration kinetics. These observations highlight the physiological importance of A. suum perienteric NADH-methemoglobin and cytosolic metmyoglobin reductase systems. Differential roles of A. suum perienteric hemoglobin and body wall myoglobin are also discussed from the viewpoint of oxygen homeostasis under hypoxic conditions.  相似文献   

17.
Using a classical methodlogy of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulos) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-4509. It has been proven to be different from all preceedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-4509, does not recognize rat liver microsomes; thus this cytochrome P-4509 is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quatitative polymorphism. In reconstituted system, cytochrome P-4509 is able to hydroxylate all substrates tested but is not specific on any; its exatc role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

18.
Summary Metabolism of sulfonylurea herbicides by Streptomyces griseolus ATCC 11796 is carried out via two cytochromes P-450, P-450SU1 and P-450SU2. Mutants of S. griseolus, selected by their reduced ability to metabolize a fluorescent sulfonylurea, do not synthesize cytochrome P-450SU1 when grown in the presence of sulfonylureas. Genetic evidence indicated that this phenotype was the result of a deletion of > 15 kb of DNA, including the structural genes for cytochrome P-450SU1 and an associated ferredoxin Fd-1 (suaC and suaB, respectively). In the absence of this monooxygenase system, the mutants described here respond to the presence of sulfonylureas or phenobarbital in the growth medium with the expression of only the suhC,B gene products (cytochrome P-450SU2 and Fd-2), previously observed only as minor components in wild-type cells treated with sulfonylurea. These strains have enabled an analysis of sulfonylurea metabolism mediated by cytochrome P-450SU2 in the absence of P-450SU1, yielding an in vivo delineation of the roles of the two different cytochrome P-450 systems in herbicide metabolism by S. griseolus.  相似文献   

19.
20.
Four forms of bovine adrenodoxin with modified amino-termini obtained by direct expression of cDNAs in Escherichia coli are Ad(Met1), Ad(Met−1), Ad(Met−12), and Ad(Met6). The shoulder numbers represent this site of translation initiator Met at the amino-termini. The adrenodoxins, except for Ad(Met−1), were purified from the cell lysate and the ratios of A414-to-A276 of the purified proteins were over 0.92. NADPH-cytochrome c reductase activities of the three forms of adrenodoxin in the presence of adrenodoxin reductase were the same as that of purified bovine adrenocortical adrenodoxin. However, as cytochrome P-450SCC reduction catalyzed by Ad(Met0) was about 60% or that by Ad(Met1), the contribution of the amino-terminal region for the electron transfer or binding to cytochrome P-450SCC would need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号