首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的:研究通过环境光扰乱正常昼夜节律对睡眠的影响。方法:使用小鼠昼夜节律模型(20小时一个循环,10小时见光,10小时避光),利用小鼠睡眠生物解析系统,记录脑电波和肌电波,分析睡眠觉醒量、不同时间睡眠觉醒波delta功率和睡眠时相转换等参数。结果:昼夜节律干扰后导致昼夜觉醒差异、非快速眼动睡眠差异(NREM),和快速眼动睡眠(REM)差异消失(P0.05),昼夜节律干扰后增加了觉醒和NREM睡眠之间的转换次数(P0.05),昼夜节律紊乱的光照时相在开始时没有delta功率减弱征象(P0.05)。结论:昼夜节律模型不会导致典型的睡眠剥夺,但是会对睡眠时间和质量会产生影响。本研究一步证实昼夜节律对睡眠调节有着重要的作用。  相似文献   

2.
睡眠是影响人体健康的重要因素,睡眠失调易引起多种生理和心理疾病。睡眠稳态既受外界因素(昼夜变化、饮食和温度)影响,亦受内在系统(分子钟和促睡眠/觉醒神经元)调控。细胞内有CLOCK、PER、CRY、NPAS2和BMAL1等分子周期性变化控制生物节律;脑内有基底前脑、丘脑、下丘脑、脑桥和延髓等神经元群体特异性地抑制或促进睡眠与觉醒,各核团之间通过突触连接形成神经网络启动和维持觉醒、非快速眼动睡眠和快速眼动睡眠。睡眠障碍普遍存在,本综述将针对调控生物体睡眠-觉醒的分子、细胞和脑网络机制展开讨论,为防治睡眠障碍类疾病提供新的思路。  相似文献   

3.
中缝核5-羟色胺能神经元通过其广泛的神经投射影响大脑多方面的功能,包括抑郁和焦虑、睡眠-觉醒周期、奖赏、决策中的耐心以及性别取向等.背侧中缝核和中央中缝核的5-羟色胺能神经元对嗅球有密集的神经投射,从而调控嗅觉信息的初步表征和编码.近年来,随着电生理、光学成像及光遗传技术的应用,关于中缝核5-羟色胺能神经元对嗅球的调制作用研究不断出现,大量离体和在体实验证据表明中缝核5-羟色胺能神经元对嗅球及嗅觉相关行为有广泛的调制.本文从嗅球不同神经元类型角度,就中缝核5-羟色胺能神经投射对嗅球的调控作用及其神经机制研究进展进行了总结.  相似文献   

4.
中缝背核5-羟色胺能神经元在睡眠调节中的作用研究   总被引:1,自引:0,他引:1  
目的:研究中缝背核(DRN)5-羟色胺(5-HT)能神经元在睡眠中的调节作用。方法:运用脑立体定位、核团微量注射和多导睡眠描记(PSG),观察DRN 5-HT能神经元对大鼠睡眠的影响。结果:DRN微量注射谷氨酸钠(L-Glu),大鼠睡眠减少,特别是深慢波睡眠(SWS2)明显减少,觉醒(W)增加;DRN微量注射海人酸(KA)和对氯苯丙氨酸(PCPA),大鼠SWS2和异相睡眠(PS)增加,W减少。结论:DRN 5-HT能神经元参与睡眠的调节,兴奋DRN 5-HT能神经元睡眠时间减少,抑制DRN 5-HT能神经元则具有促进睡眠的作用。  相似文献   

5.
哺乳动物的生活实际上是由睡眠与觉醒、休息与活动、镇静与警戒组成的。上世纪早期的研究预示了在下丘脑后部有一促觉醒区 ,目前神经科学家已证实了上述预测。下丘脑的hypocretin(也称为orexin)神经元对于觉醒系统的调节起着决定性作用 ,该神经元的活动能使睡意减少 ,同时提高觉醒和警戒。Hypocretin神经元分泌兴奋性神经递质hypocretin 1和hypocretin 2 ,投射到参与睡眠 觉醒机制的脑干 ,脑干的这些结构各有自己主要的神经递质 (如缝核的 5 羟色胺、蓝斑的去甲肾上腺素、背侧被盖的乙酰胆碱、乳头结节核的组胺、内侧隔核与斜角带核的γ …  相似文献   

6.
采用多导睡眠描记术研究了例脑室注射促甲状腺激素释放激素(TRH)对正常大鼠和去甲状腺大鼠睡眠-觉醒的影响。在正常大鼠,TRH引起觉醒增加,浅慢波睡眠(SWS_1)、深慢波睡眠(SWS_2)和总睡眠时间(TST)均减少,异相睡眠(PS)消失,SWS_1、SWS_2和PS的潜伏期均显著延长,给药后立即产生效应并在1h内达高峰。去甲状腺对大鼠的睡眠-觉醒无明显影响,注射TRH后引起的效应与正常大鼠相似。结果提示TRH有促进大鼠觉醒的作用,对各睡眠时相均有抑制作用,其作用部位可能在下丘脑以外的中枢结构。  相似文献   

7.
人的精神活动高级而又复杂,至今仍是未解之谜。目前研究认为多巴胺作为脑内重要神经递质,参与调节人的精神活动和运动功能,尤其在睡眠的主动性神经调节过程,以及学习记忆等认知功能的神经环路中,多巴胺都发挥着不可替代的作用。本文将通过对多巴胺神经系统,睡眠,认知功能的概述,以及通过对多巴胺神经系统与睡眠-觉醒系统和认知功能的解剖学联系的简述,结合多巴胺神经元、多巴胺受体及多巴胺转运体等不同角度分别阐述其对睡眠-觉醒和认知功能的调控作用,以期揭开人类精神活动的产生机制的一层面纱,以及对多巴胺药物对神经退行性变疾病的治疗靶点提供一定的理论支持。  相似文献   

8.
大鼠海马CA1区GABA能神经元在睡眠调节中的作用   总被引:1,自引:0,他引:1  
采用脑立体定位技术确定Sprague-Dawley大鼠(Rattus norregicus)双侧海马CA1区插管位置并进行核团埋管,同时安装脑电和肌电电极,用于记录大鼠皮层脑电活动和肌电活动。运用睡眠描记技术观察海马CA1区微量注射药物后对大鼠睡眠-觉醒周期的影响。发现海马内微量注射0.75μg、1.0μg的γ-氨基丁酸(GABA)后觉醒时间增加,分别为(120.7±13.3)min和(124.6±19.2)min(P0.05),睡眠时间减少,分别为(119.4±13.3)min与(115.4±19.2)min(P0.05),其中,深慢波睡眠时间(SWS2)分别减少53.3%(t=2.451,P0.05)和63.5%(t=3.367,P0.01);而微量注射1.0μgGABAA受体阻断剂荷包牡丹碱(Bic)后,睡眠时间增加(165.5±20.8)min(P0.01),觉醒时间减少(74.5±20.8)min(P0.01),其中,SWS2时间增加79.6%(t=2.600,P0.05),并可对抗GABA的促醒效应;微量注射GABAB受体激动剂氯苯氨基丁酸(Bac)对睡眠-觉醒周期无直接影响,亦不能阻断GABA的促醒效应。结果提示,GABA在海马参与大鼠睡眠-觉醒周期的调节且具有促觉醒作用,GABA对睡眠的影响主要是通过改变深慢波睡眠成分实现的,GABAA受体参与介导了这一过程。  相似文献   

9.
238医院在应用清栓酶治疗脑血栓病人中发现,病人入院后经用清栓酶0.5μ/10,2-3天后,病人自觉易困,切睡眠时间延长。用药一疗程后(15天)病人基本恢复到正常睡眠.与未用本药前比病人头昏,入睡困难,睡眠时间短等症消失。就此情况我们进行了初步研究和分析.脑干网状结构正中区的中缝核群,边缘系统及大脑皮质的色胺能上行通路,与精神活动有关并具有兴奋和抑制的双重作用,与睡眠觉醒有关。实验证明,中缝核头端的5-羟色胺神经元对慢波睡眠的发生和维持起重要作用,而尾端的5-羟色胺神经元则可引起蓝斑中部和尾部的兴奋,而促发去同步睡眠。这  相似文献   

10.
目的:了解帕金森病(PD)模型大鼠在快动眼睡眠状态下皮层脑电和基底节场电位的异常变化。方法:用6-羟基多巴胺(6-OHDA)脑内两点注射法建立PD大鼠模型,并经阿扑吗啡注射诱发旋转对模型进行评价。通过多导宏电极在体电生理记录技术结合视频录像,对正常大鼠和6-OHDA大鼠PD模型进行苍白球场电位和皮层M1、M2区脑电的多部位24小时同时记录。功率谱分析和相干分析用于揭示快动眼睡眠状态下各记录位点信号的频率成分以及不同记录位点神经元集群之间的变化。结果:与正常大鼠相比,6-OHDA帕金森病模型大鼠在REM期间的皮层脑电在θ和γ频段上都有变化:初级运动皮质M1区的θ频段成分消失,辅助运动区M2的θ频段成分略有增加,患侧苍白球的θ频段成分增大显著;M1区的γ频段成分增大,而γ频段成分在苍白球基本没有变化。结论:6-OHDA对中脑多巴胺能神经元的损害可造成大鼠双侧皮层M1区θ节律的消失和γ节律的增强,以及对侧M1-M2区之间在γ节律上的同步被显著增强,而γ节律在苍白球没有变化。这些异常电活动可能是由于VTA受损引起从而与帕金森病的快动眼睡眠行为障碍有关。  相似文献   

11.
BACKGROUND: Although sleep is an important process essential for life, its regulation is poorly understood. The recently developed Drosophila model for sleep provides a powerful system to genetically and pharmacologically identify molecules that regulate sleep. Serotonin is an important neurotransmitter known to affect many behaviors, but its role in sleep remains controversial. RESULTS: We generated or obtained flies with genetically altered expression of each of three Drosophila serotonin receptor subtypes (d5-HT1A, d5-HT1B, and d5-HT2) and assayed them for baseline sleep phenotypes. The data indicated a sleep-regulating role for the d5-HT1A receptor. d5-HT1A mutant flies had short and fragmented sleep, which was rescued by expressing the receptor in adult mushroom bodies, a structure associated with learning and memory in Drosophila. Neither the d5-HT2 receptor nor the d5-HT1B receptor, which was previously implicated in circadian regulation, had any effect on baseline sleep, indicating that serotonin affects sleep and circadian rhythms through distinct receptors. Elevating serotonin levels, either pharmacologically or genetically, enhanced sleep in wild-type flies. In addition, serotonin promoted sleep in some short-sleep mutants, suggesting that it can compensate for some sleep deficits. CONCLUSIONS: These data show that serotonin promotes baseline sleep in Drosophila. They also link the regulation of sleep behavior by serotonin to a specific receptor in a distinct region of the fly brain.  相似文献   

12.
Sleep inertia is a brief period of inferior task performance and/or disori-entation immediately after sudden awakening from sleep. Normally sleep inertia lasts <5 min and has no serious impact on conducting routine jobs. This preliminary study examined whether there are best and worst times to wake up stemming from circadian effects on sleep inertia. Since the process of falling asleep is strongly influenced by circadian time, the reverse process of awakening could be similarly affected. A group of nine subjects stayed awake for a 64-h continuous work period, except for 20-min sleep periods (naps) every 6 h. Another group of 10 subjects stayed awake for 64 h without any sleep. The differences between these two groups in performance degradation are expected to show sleep inertia on the background of sleep deprivation. Sleep inertia was measured with Baddeley's logical reasoning task, which started within 1 min of awakening and lasted for 5 min. There appeared to be no specific circadian time when sleep inertia is either maximal or minimal. An extreme form of sleep inertia was observed, when the process of waking up during the period of the circadian body temperature trough became so traumatic that it created “sleep (nap) aversion.” The findings lead to the conclusion that there are no advantages realized on sleep inertia by waking up from sleep at specific times of day.  相似文献   

13.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 1B receptor subtype in mediating the effects of selective serotonin re-uptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg, but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiated the effect of a single administration of paroxetine on extracellular 5-HT levels more in the ventral hippocampus than in the frontal cortex. These data suggest that 5-HT1B autoreceptors limit the effects of SSRIs on dialysate 5-HT levels at serotonergic nerve terminals.  相似文献   

14.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

15.
Depression is characterized by sadness, purposelessness, irritability, and impaired body functions. Depression causes severe symptoms for several weeks, and dysthymia, which may cause chronic, low-grade symptoms. Treatment of depression involves psychotherapy, medications, or phototherapy. Clinical and experimental evidence indicates that an appropriate diet can reduce symptoms of depression. The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B6. Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods. Tryptophan-rich diet is important in patients susceptible to depression such as certain females during pre and postmenstrual phase, post-traumatic stress disorder, chronic pain, cancer, epilepsy, Parkinson’s disease, Alzheimer’s disease, schizophrenia, and drug addiction. Carbohydrate-rich diet triggers insulin response to enhance the bioavailability of tryptophan in the CNS which is responsible for increased craving of carbohydrate diets. Although serotonin reuptake inhibitors (SSRIs) are prescribed to obese patients with depressive symptoms, these agents are incapable of precisely regulating the CNS serotonin and may cause life-threatening adverse effects in the presence of monoamine oxidase inhibitors. However, CNS serotonin synthesis can be controlled by proper intake of tryptophan-rich diet. This report highlights the clinical significance of tryptophan-rich diet and vitamin B6 to boost serotonergic neurotransmission in depression observed in various neurodegenerative diseases. However pharmacological interventions to modulate serotonergic neurotransmission in depression, remains clinically significant. Depression may involve several other molecular mechanisms as discussed briefly in this report.  相似文献   

16.
The present study has attempted to elucidate the alteration of serotonin turnover after 24 h REM sleep deprivation in different regions in brain of young rat. Sleep deprivation was induced by the inverted flowerpot technique. Results of this study show increased serotonin turnover after 24 h REM sleep deprivation in all the brain regions except in the hypothalamus. The decreased 5-HT ratio shows increased serotonin in the hypothalamus after 24 h sleep deprivation. This study indicates increased activity of serotonergic neurons in the hypothalamus after 24 h sleep deprivation. This also indicates that the hypothalamus plays a role in the immediate compensatory mechanism during 24 h REM sleep deprivation in young rats.  相似文献   

17.
Genetic manipulation of the 5-HT system leads to alterations of 5-HT neurotransmission and provides new opportunities to investigate the role of 5-HT in sleep regulations. Indeed, it represents an alternative to the use of pharmacological tools and, to some extent, of localized lesions of the 5-HT system, which have been, from the 1960s until recently, the main approaches to investigate this question. Homologous recombination knocking-out genes encoding various proteins involved in 5-HT neurotransmission in the mouse has recently allowed further assesment of the role of the serotonin transporter (5-HTT), the monoamine oxidase A (MAO-A), and the 5-HT1A, 5-HT1B and 5-HT2A receptors in the regulation of sleep. In 5-HT1A -/- and 5-HT1B -/- knock-out mice, Rapid Eye Movement sleep (REMs) was enhanced. Pharmacological blockade of these receptors had the same effects in wild-types. Thus, both receptor types exert a tonic inhibitory influence on REMs. In addition, 5-HT1A -/- and 5-HT1B -/- mutants were hypersensitive to 5-HT1B and 5-HT1A receptor agonists, respectively, which suggests that adaptive changes at 5-HT neurotransmission develop in knock-out animals. In the same manner, 5-HTT-/- knock-out mice exhibited increased REMs. This may be accounted for by a decrease in 5-HT1A and 5-HT1B receptor-mediated sleep regulations. In contrast, decreased REMs was observed in MAOA -/- knock-outs, a phenomenon that mimics the effect of pharmacological MAO inhibition. Finally, 5-HT2A -/- and 5-HT2C -/- mice exhibited more wakefulness and less slow wave sleep (SWS) than wild-types. These effects could not be reproduced by 5-HT2A or 5-HT2c receptor blockade in wild-types. To conclude, constitutive knock-outs undergo adaptive processes involving other proteins than those encoded by the invalidated gene, which renders interpretation of the corresponding sleep phenotype difficult. Inducible knock-outs will probably help to overcome this difficulty. Finally, combination of genetic manipulations with relevant pharmacological ones should allow further progress in the understanding of sleep mechanisms.  相似文献   

18.
We use the knockout mice strategy to investigate the contribution of the 5-HT1B receptor in mediating the effects of selective serotonin reuptake inhibitors (SSRI). Using microdialysis in awake 129/Sv mice, we show that the absence of the 5-HT1B receptor in mutant mice (KO 1B -/-) potentiated the effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, but not in the frontal cortex compared to wild-type mice (WT). Furthermore, using the forced swimming test, we demonstrate that SSRIs decreased immobility of WT mice, and this effect is absent in KO 1B -/- mice showing therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these findings suggest that 5-HT1B autoreceptors limit the effects of SSRI particularly in the hippocampus while postsynaptic 5-HT1B receptors are required for the antidepressant activity of SSRIs.  相似文献   

19.
The discharge pattern of single neurons localized in raphe nuclei dorsalis and centralis superior was recorded in "encéphale isolé" cats, during sleep and wakefulness episodes occurring spontaneously or triggered by vago-aortic stimulation. In both nuclei, a similar and progressive decrease in frequency of discharges is generally observed during shifts between wakefulness, the transitional phase of sleep and paradoxical sleep. In addition, the release of serotonin (5-HT) has been studied with push-pull cannulae (caudate nucleus level) and superfusion techniques (cortical associative area) in relation to the different stages of consciousness. The results showed a clear diminution of endogenous 5-HT released during spontaneously occurring or vago-aortic triggered sleep.  相似文献   

20.
The influence of external stimuli and the memories of both unpleasant and pleasant conditions clearly can have a considerable impact on the quality of sleep. The amygdala, a structure that plays an important role in coding the emotional significance of stimuli and is heavily interconnected with brainstem nuclei known to be involved in sleep control, has received little attention from sleep researchers. We report on a series of studies, focusing on its central nucleus (Ace). Presence of serotonin (5-HT) in Ace caused a rapid change of state when injected in rapid- eye-movement sleep (REM) compared with non-REM (NREM) injections. A 5-HT antagonist released ponto-geniculo-occipital waves (PGO) into NREM. Stimuli conditioned by pairing with aversive stimuli in a fear-conditioning paradigm significantly increased sound-elicited PGO and reduced REM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号