首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
终生的抗原/应激原暴露使机体处于慢性氧化应激状态。氧化应激导致生物分子的氧化损伤,引起机体产生内源性的损伤相关的分子模式(damage associated molecular patterns,DAMPs)和细胞因子的释放。损伤相关的分子模式能激活模式识别受体(pattern recognition receptors,PRRs)与非模式识别受体。细胞因子能激活PRRs下游的信号通路。这些受体介导的信号通路的激活,导致细胞因子和趋化因子释放增加,招募和激活更多的炎性细胞,引起机体系统性慢性无菌炎症反应。机体稳态的调节系统,特别是免疫系统细胞更易因氧化应激遭受损伤,导致机体稳态平衡的破坏,因而在炎症衰老中起重要作用。遗传因素是影响氧化应激-炎症-衰老及老年相关疾病的重要因素,涉及氧化应激、炎症的基因可对炎性衰老产生影响。载脂蛋白ApoE基因多态性明显影响ApoE蛋白的结构与功能,使不同ApoE蛋白表现出不同的抗氧化和抗炎作用,从而影响炎性衰老和老年相关疾病的发展和预后。抗炎结合调节ApoE表达是对抗炎性衰老和老年相关疾病有效手段之一。本文结合我们的前期研究,对以上方面的研究进展作一综述。  相似文献   

2.
基因组不稳定(genomic instability)是机体衰老的标志之一,也是儿童早老症(Hutchinson Gilford progeria syndrome, HGPS)患者细胞的典型特征。HGPS的发生与早老素(progerin)堆积密切相关,但早老素如何引起基因组不稳定尚缺乏系统性的阐述。基因组的结构稳定与DNA的正确复制、DNA损伤修复、端粒的维持和稳定以及表观遗传学修饰密切相关。本文主要讨论早老素在改变正常核纤层结构的基础上,通过影响相关通路关键蛋白质的水平或者定位,引起细胞内氧化应激增强、DNA复制应激和DNA损伤修复障碍,细胞DNA损伤增多和端粒的加速缩短,并在改变组蛋白甲基化和乙酰化方面导致基因组不稳定的机制。  相似文献   

3.
Cai C  Chang LW 《生理科学进展》2008,39(2):172-174
动物实验和临床研究表明,长期高浓度供氧可引起新生儿尤其早产儿产生氧化应激性损伤,多数学者认为这种氧化应激损伤在高氧肺损伤发生发展中起关键作用. 高氧时,氧化应激对肺泡Ⅱ型上皮细胞(alveolar epithelial cell type Ⅱ,AECⅡ)的影响包括对肺泡上皮细胞的损伤和对肺泡上皮细胞的保护.AECⅡ存活与凋亡有赖于细胞内的氧化还原状态, 通过改变细胞内的氧化还原状态可干预氧化应激.硫氧还蛋白系统( thioredoxin system )在生物体内通过抗氧化和氧化还原调节, 在基因表达、信号转导、细胞生长、细胞凋亡等方面起重要作用.  相似文献   

4.
核纤层蛋白是一种存在于真核细胞核膜下的中间丝纤维蛋白,是细胞核中重要的骨架蛋白,对维持细胞核的结构和功能具有重要作用。其基因突变会引起一系列的遗传性疾病,称为核纤层蛋白病。这些疾病在细胞水平表现出氧化应激和DNA损伤的特征,提示核纤层蛋白在氧化应激和DNA损伤反应中具有重要作用。本文主要就A型核纤层蛋白在氧化应激、DNA损伤反应中的作用机制进行综述。  相似文献   

5.
臭氧是氧气的同素异形体,在常温条件下它是一种有特殊臭味的淡蓝色气体。臭氧现已成为我国主要的一种环境污染物。臭氧的分布存在着明显的时间特异性和地区特异性,与气象条件、污染物的输送与扩散以及局地光化学反应强度等因素有着重要的关系。同时在人群流行病学和动物实验中发现了臭氧可以提高慢性阻塞性肺疾病、哮喘等呼吸系统疾病的发病率和病死率,同时提示了老年人、有呼吸系统疾病病史的人群和儿童都是易受臭氧影响的高危人群。国内外学者也对臭氧对机体损伤的机制进行了研究,主要集中在臭氧的致炎作用、氧化应激作用、造成机体气道高反应性和对细胞DNA的损伤等方面。本文主要就国内外对臭氧在时空分布、对机体呼吸系统影响和臭氧造成机体损伤的机制这3方面作一简要综述。  相似文献   

6.
上皮细胞转分化现象及其与疾病发生发展的关系,近年已成为细胞生物学、免疫学等多学科关注的聚焦点。转分化作为细胞分化发育的基本生物学现象,存在于机体诸多生理病理过程,也受表观遗传学的调控。相对于经典遗传学而言,表观遗传学作为一门新兴学科,其为生物体的基因表达调控及遗传现象提供了新的理论阐释。现知,DNA甲基化、组蛋白修饰及非编码RNA等均可导致上皮细胞基因发生表观遗传改变,与上皮细胞转分化的发生发展密切相关,并在该过程中发挥重要的调控作用。进一步阐明细胞转分化的分子基础及其表观遗传学调控机制,将有助于认识生命现象基本过程,并可为炎症性疾病、自身免疫病、器官纤维化,以及肿瘤发生与转移等机制的研究与防治,提供新的思路和应对策略。对上皮细胞转分化与表观遗传学调控关系作一简述。  相似文献   

7.
细胞对DNA损伤进行精确、高效修复的机制被称为DNA损伤应答机制,增殖细胞核抗原(PCNA)在DNA损伤修复机制中起着核心的作用。当细胞遭遇到DNA损伤时,PCNA通过泛素化及类泛素化的翻译后修饰对DNA修复过程进行调控。本文重点阐述DNA损伤修复的不同方式,以及泛素/类泛素化相关蛋白参与调控DNA损伤修复过程的研究进展,并分析了DNA损伤修复与机体的衰老和发育之间的密切关系,为研究DNA修复蛋白的缺失在相关疾病中的作用机制提供新思路。  相似文献   

8.
肝脏是机体重要的代谢器官,在机体全身衰老中尤为重要。脂肪肝、肝硬化和肝癌等老年常见病都与肝脏衰老密切相关。细胞凋亡作为一种细胞自我清除的保护机制,在生物机体衰老过程中不可或缺。越来越多的研究证据表明,凋亡在肝脏衰老中起着重要作用。适度的凋亡对于肝脏衰老是必要的;过度凋亡会造成功能细胞的大量丧失、疾病恶化,甚至最后导致肝功能衰竭;凋亡不足则会使损伤的细胞积蓄,导致细胞坏死或癌变。因此,维持细胞凋亡在衰老肝脏中的适度平衡可延缓或减轻肝脏衰老对机体的影响。该文针对肝脏衰老过程中凋亡的调控机制包括氧化应激、基因不稳定性、脂肪毒性、内质网应激、营养感应失调等的研究进展进行了分析总结。  相似文献   

9.
氧化应激是由体内生成的活性氧(reactive oxygen species,ROS)/活性氮(reactivenitro.genspecies,RNS)与抗氧化防御机制之间的平衡被打破引起的,这与许多疾病的发病机理相关,包括神经退行性病变、肿瘤、炎症性疾病等。而线粒体作为细胞代谢的中枢,是其作用的主要靶细胞器,氧化应激引起线粒体内脂质、蛋白质与核酸的损伤,导致线粒体结构和功能的改变,该文就线粒体在上述与氧化应激相关的疾病中改变的研究进展作一综述。  相似文献   

10.
CTX是临床上常用的抗肿瘤药物与免疫抑制剂,其在体内的代谢产物具有很强的烷化作用,可引起DNA链内和链间的交叉连接,干扰转录和复制,造成DNA的损伤。CTX导致DNA损伤的机制与环磷酰胺代谢过程中产生的自由基过量以及代谢产物产生的烷化作用有关,目前减轻CTX造成的DNA损伤的措施主要是提高机体的抗氧化能力和促进机体修复损伤的DNA。DNA损伤会对机体产生一系列变化如导致肿瘤、神经退行性病变、衰老和遗传易感综合症等疾病的发生、发展。本文综述了CTX导致DNA损伤的机制及其防治研究进展,以其为CTX的临床安全用药和今后的科学研究提供思路和依据。  相似文献   

11.
Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxidative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of age-related diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways. Currently, Dr. Qin's work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.  相似文献   

12.
Smoking is associated with an increased risk of respiratory diseases, including lung cancer and asthma. However, the mechanisms or diagnostic markers for smoking‐related diseases remain largely unknown. Here we investigated the role of cigarette smoke condensate (CSC) in the regulation of human bronchial epithelial cell (BEAS‐2B) behavior. We found that exposure to CSC significantly inhibited BEAS‐2B cell viability, impaired cell morphology, induced cell apoptosis, triggered oxidative damage, and promoted inflammatory response, which suggests a deleterious effect of CSC on bronchial epithelial cells. In addition, CSC markedly altered the expression of apoptosis‐associated protein factors, including p21, soluble tumor necrosis factor receptor 1, and Fas ligand. In sum, our study identified a panel of novel protein factors that may mediate the actions of CSC on bronchial epithelial cells and have a predictive value for the development and progression of smoking‐related diseases, thus providing insights into the development of potential diagnostic and therapeutic strategies against these diseases.  相似文献   

13.
miR‐205‐5p is known to be involved in VEGF‐related angiogenesis and seems to regulate associated cell signalling pathways, such as cell migration, proliferation and apoptosis. Therefore, several studies have focused on the potential role of miR‐205‐5p as an anti‐angiogenic factor. Vascular proliferation is observed in diabetic retinopathy and the ‘wet’ form of age‐related macular degeneration. Today, the most common treatments against these eye‐related diseases are anti‐VEGF therapies. In addition, both AMD and DR are typically associated with oxidative stress; hence, the use of antioxidant agents is accepted as a co‐adjuvant therapy for these patients. According to previous data, ARPE‐19 cells release pro‐angiogenic factors when exposed to oxidative insult, leading to angiogenesis. Matching these data, results reported here, indicate that miR‐205‐5p is modulated by oxidative stress and regulates VEGFA‐angiogenesis. Hence, miR‐205‐5p is proposed as a candidate against eye‐related proliferative diseases.  相似文献   

14.
In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.  相似文献   

15.
16.
Oxidative stress has been known to be involved in pathogenesis of dry eye disease. However, few studies have comprehensively investigated the relationship between hyperosmolarity and oxidative damage in human ocular surface. This study was to explore whether and how hyperosmolarity induces oxidative stress markers in primary human corneal epithelial cells (HCECs). Primary HCECs were established from donor limbal explants. The hyperosmolarity model was made in HCECs cultured in isosmolar (312 mOsM) or hyperosmotic (350, 400, 450 mOsM) media. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and anti-oxidative enzymes were analyzed by DCFDA kit, RT-qPCR, immunofluorescent and immunohistochemical staining and Western blotting. Compared to isosmolar medium, ROS production significantly increased at time- and osmolarity-dependent manner in HCECs exposed to media with increasing osmolarities (350–450 mOsM). Hyperosmolarity significantly induced oxidative damage markers in cell membrane with increased toxic products of lipid peroxidation, 4–hydroxynonenal (4-HNE) and malondialdehyde (MDA), and in nuclear and mitochondria DNA with increased aconitase-2 and 8-OHdG. Hyperosmotic stress also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but reduced the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), and glutathione peroxidase-1 (GPX1). In conclusion, our comprehensive findings demonstrate that hyperosmolarity induces oxidative stress in HCECs by stimulating ROS production and disrupting the balance of oxygenases and antioxidant enzymes, which in turn cause cell damage with increased oxidative markers in membrane lipid peroxidation and mitochondrial DNA damage.  相似文献   

17.
Fuchs endothelial corneal dystrophy (FECD) is a slowly progressive eye disease leading to blindness, mostly affecting people above 40 years old. The only known method of curing FECD is corneal transplantation. The disease is characterized by the presence of extracellular deposits called “cornea guttata”, apoptosis of corneal endothelial cells, dysfunction of Descement’s membrane and corneal edema. Oxidative stress is suggested to play a role in FECD pathogenesis. Reactive oxygen species produced during the stress may damage biomolecules, including DNA. In the present study we evaluated the extent of endogenous DNA damage, including oxidatively modified DNA bases, and damage induced by hydrogen peroxide as well as the kinetics of DNA repair in peripheral blood mononuclear cells of 50 patients with FECD and 43 age-matched controls without visual disturbances. To quantify DNA damage and repair we used the alkaline comet assay technique with the enzymes recognizing oxidative DNA damage, hOGG1 and EndoIII. We did not observe differences in the extent of endogenous and hydrogen peroxide-induced DNA damage between FECD patients and controls. However, we found a lower efficacy of DNA repair in FECD patients as compared with control individuals. The results obtained suggest that the lowering of the DNA repair capacity may be one of the mechanisms underlying the role of oxidative stress in the FECD pathology.  相似文献   

18.
In vivo DNA damage in gastric epithelial cells   总被引:6,自引:0,他引:6  
A number of risk factors have been linked epidemiologically with gastric cancer, but studies of DNA damage in gastric epithelial cells are limited. The comet assay is a simple technique for determining levels of DNA damage in individual cells. In this study, we have validated the comet assay for use in epithelial cells derived directly from human gastric biopsies, determined optimal conditions for biopsy digestion and investigated the effects of oxidative stress and digestion time on DNA damage. Biopsies taken at endoscopy were digested using combinations of pronase and collagenase, ethylenediaminetetra-acetic acid (EDTA) and vigorous shaking. The resultant cell suspension was assessed for cell concentration and epithelial cell and leukocyte content. A score for DNA damage, the comet %, was derived from the cell suspension, and the effect of various digestion conditions was studied. Cells were incubated with H(2)O(2) and DNA damage was assessed. Pronase and collagenase provided optimum digestion conditions, releasing 1. 12x10(5) cells per biopsy, predominantly epithelial. Of the 23 suspensions examined, all but three had leukocyte concentrations of less than 20%. The comet assay had high inter-observer (6.1%) and inter-assay (4.5%) reproducibility. Overnight storage of the biopsy at 4 degrees C had no significant effect on DNA migration. Comet % increased from a median of 46% in untreated cells to 88% in cells incubated for 45 min in H(2)O(2) (p=0.005). Serial 25-min digestions were performed on biopsies from 13 patients to release cells from successively deeper levels in the crypt. Levels of DNA migration were significantly lower with each digestion (r=-0.94, p<0.001), suggesting that DNA damage is lower in younger cells released from low in the gastric crypt. The comet assay is a reproducible measure of DNA damage in gastric epithelial cells. Damage accumulates in older, more superficial cells, and can be induced by oxidative stress.  相似文献   

19.
25‐Hydroxyvitamin D3 (25(OH)D3) is a prohormone and a major vitamin D metabolite. The discovery of (25(OH)D3) 1α‐hydroxylase in many vitamin D target organs has yielded an increased interest in defining the role(s) of 25(OH)D3 in these tissues. The etiology of cancer appears to be complex and multi‐factorial. Cellular stress (e.g., DNA damage, hypoxia, oncogene activation) has been identified as one of the key factors responsible for initiating the carcinogenesis process. In this study, we investigated whether 25(OH)D3 protects breast epithelial cells from cellular stress using an established breast epithelial cell line MCF12F. To better elucidate the role of 25(OH)D3 in the stress response, we used multiple in vitro stress models including serum starvation, hypoxia, oxidative stress, and apoptosis induction. Under all these stress conditions, 25(OH)D3 (250 nmol/L) treatment significantly protected cells against cell death. Low‐serum stress induced p53 expression accompanied with downregulation of PCNA, the presence of 25(OH)D3 consistently inhibited the alteration of p53 and PCNA, suggesting that these molecules were involved in the stress process and may be potential target genes of 25(OH)D3. miRNA microarray analysis demonstrated that stress induced by serum starvation caused significant alteration in the expression of multiple miRNAs including miR182, but the presence of 25(OH)D3 effectively reversed this alteration. These data suggest that there is a significant protective role for 25(OH)D3 against cellular stress in the breast epithelial cells and these effects may be mediated by altered miRNA expression. J. Cell. Biochem. 110: 1324–1333, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Cigarette smoke extracts (CSE) induce oxidative stress, an important feature in chronic obstructive pulmonary disease (COPD), and oxidative stress contributes to the poor clinical efficacy of corticosteroids in COPD patients. Carbocysteine, an antioxidant and mucolytic agent, is effective in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on CSE-induced oxidative stress in bronchial epithelial cells as well as the comparison of these antioxidant effects of carbocysteine with those of fluticasone propionate are unknown. The present study was aimed to assess the effects of carbocysteine (10−4 M) in cell survival and intracellular reactive oxygen species (ROS) production (by flow cytometry) as well as total glutathione (GSH), heme oxygenase-1 (HO-1), nuclear-related factor 2 (Nrf2) expression and histone deacetylase 2 (HDAC-2) expression/activation in CSE-stimulated bronchial epithelial cells (16-HBE) and to compare these effects with those of fluticasone propionate (10−8 M). CSE, carbocysteine or fluticasone propionate did not induce cell necrosis (propidium positive cells) or cell apoptosis (annexin V-positive/propidium-negative cells) in 16-HBE. CSE increased ROS production, nuclear Nrf2 and HO-1 in 16-HBE. Fluticasone propionate did not modify intracellular ROS production, GSH and HDCA-2 but reduced Nrf2 and HO-1 in CSE-stimulated 16-HBE. Carbocysteine reduced ROS production and increased GSH, HO-1, Nrf2 and HDAC-2 nuclear expression/activity in CSE-stimulated cells and was more effective than fluticasone propionate in modulating the CSE-mediated effects. In conclusion, the present study provides compelling evidences that the use of carbocysteine may be considered a promising strategy in diseases associated with corticosteroid resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号