首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Gentle A  McBrien NA 《Cytokine》2002,18(6):344-348
AIMS: Studies in avian models of myopia have shown that refractive error development can be influenced by exogenously delivered fibroblast growth factor (FGF)-2. The present study sought to determine whether endogenous FGF-2 was associated with retinoscleral signalling or scleral remodelling during changes in refractive error in a mammalian model of myopia. METHODS: Myopia was induced in tree shrews over a 5-day period. One group of animals was then allowed 3 days of recovery from the induced myopia. Endogenous levels of FGF-2 were measured in scleral and retinal homogenates using ELISA. Real-time PCR was used to investigate scleral FGF-2 and FGF receptor (FGFR)-1 mRNA expression. RESULTS: No difference in FGF-2 content was found in posterior scleral or retinal extracts of myopic eyes (scleral -4+/-9%, retinal +23+/-17%) or recovering eyes (scleral -10+/-18%, retinal +1+/-13%), when compared with contralateral control eyes. In addition, no significant changes were found in scleral FGF-2 mRNA expression in myopic or recovering eyes (+106+/-56% and +14+/-12% respectively, P=0.21). However, FGF-2 concentration was significantly higher in anterior, relative to posterior, scleral regions in all animals (1602+/-105 vs 1030+/-50pg/mg respectively P<0.001). Expression of scleral FGFR-1 mRNA was upregulated in myopic eyes (+186+/-32%, P=0.01) but returned to control eye levels during recovery (+63+/-20%). CONCLUSIONS: The findings indicate that alterations in endogenous retinal or scleral FGF-2 levels are not associated with changes in scleral remodelling in this mammalian model of myopia. However, the reversible changes found in FGFR-1 expression in the sclera of myopic eyes mean that an indirect role for FGF-2 in the control of scleral remodelling is implicated. The anteroposterior difference found in scleral FGF-2 concentration indicates a role for this cytokine in the control of normal scleral growth and development and, presumably, eye size.  相似文献   

2.
rho(1) GABA(C) receptor antagonists inhibit myopia in chick but the site of this effect is not known. The sclera ultimately determines the shape and size of the globe and thus an untested possibility is that GABA agents have a scleral mechanism. Whether rho(1) GABA(C) receptors are expressed and located in chick sclera is unknown. Real-time PCR, western blot and immunohistochemistry were used to determine whether rho1 GABA(C) receptors are expressed and located in chick fibrous and cartilaginous sclera. Both layers of the chick sclera were positive for rho1 GABA(C) receptor mRNA (PCR) and protein (western blot) expression and labeling was observed in both fibroblasts and chondrocytes of the fibrous and cartilaginous layers (immunohistochemistry). These investigations clearly show that chick sclera possesses rho(1) GABA(C) receptors. The sclera is thus a potential previously unrecognized site for activity of rho(1) GABA(C) agents.  相似文献   

3.
Insulin-like growth factors (IGFs) are important stimulators of proliferation and differentiation of cultured myoblasts. It has previously been shown that IGF-I is induced during muscle regeneration in rodents, however, little is known about the expression of IGF-II. Therefore, two in vivo models were used to analyze IGF-II mRNA expression during skeletal muscle regeneration in the rat: injection of the snake venom notexin and induction of ischemia. During the regeneration process the levels of both IGF-I and IGF-II mRNA were transiently induced, as analyzed by solution hybridization. Both IGF-I-like immunoreactivity and IGF-II-like immunoreactivity were found to be present during muscle regeneration. In a time course study, induction of IGF-II was preceded by IGF-I, both at the mRNA and protein levels. Using alpha- and beta-actin as markers for different stages of skeletal muscle differentiation, together with the immunohistochemistry data, it is concluded that the expression of IGF-I and IGF-II occurs at different differentiation stages, and that IGF-II appears concomitant to the formation of myotubes. These results suggest that each IGF has a distinct role during the differentiation of muscle cells.  相似文献   

4.

Introduction

In human eyes, ocular enlargement/growth reflects active extracellular matrix remodeling of the outer scleral shell. Micro-RNAs are small non-coding RNAs that regulate gene expression by base pairing with target sequences. They serve as nodes of signaling networks. We hypothesized that the sclera, like most tissues, expresses micro-RNAs, some of which modulate genes regulating ocular growth. In this study, the scleral micro-RNA expression profile of rapidly growing human fetal eyes was compared with that of stable adult donor eyes using high-throughput microarray and quantitative PCR analyses.

Methods

Scleral samples from normal human fetal (24 wk) and normal adult donor eyes were obtained (n=4 to 6, each group), and RNA extracted. Genome-wide micro-RNA profiling was performed using the Agilent micro-RNA microarray platform. Micro-RNA target predictions were obtained using Microcosm, TargetScan and PicTar algorithms. TaqMan® micro-RNA assays targeting micro-RNAs showing either highest significance, detection, or fold differences, and collagen specificity, were applied to scleral samples from posterior and peripheral ocular regions (n=7, each group). Microarray data were analyzed using R, and quantitative PCR data with 2^-deltaCt methods.

Results

Human sclera was found to express micro-RNAs, and comparison of microarray results for adult and fetal samples revealed many to be differentially expressed (p<0.01, min p= 6.5x1011). Specifically, fetal sclera showed increased expression of mir-214, let-7c, let-7e, mir-103, mir-107, and mir-98 (1.5 to 4 fold changes, p<0.01). However, no significant regionally specific differences .i.e., posterior vs. peripheral sclera, were observed for either adult or fetal samples.

Conclusion

For the first time, micro-RNA expression has been catalogued in human sclera. Some micro-RNAs show age-related differential regulation, higher in the sclera of rapidly growing fetal eyes, consistent with a role in ocular growth regulation. Thus micro-RNAs represent potential targets for ocular growth manipulation, related to myopia and/or other disorders such as scleral ectasia.  相似文献   

5.
We have investigated the influence of steroid hormones on insulin-like growth factor II (IGF-II) expression. Hepatic IGF-II mRNA decreased gradually during postnatal development, reaching adult levels at 3 weeks of age. Treatment of 1-day-old rats for 4 days with 10 micrograms/day of the glucocorticoid dexamethasone (DEX) reduced IGF-II mRNA levels 10-fold in liver and inhibited body weight gain. Estradiol and testosterone did not affect IGF-II expression. A dose-response relationship between IGF-II mRNA levels and the different amounts of DEX injected was seen. IGF-II levels remained low after withdrawal of DEX, indicating an irreversible effect. Albumin expression was increased in newborn rat livers after DEX treatment. Our results suggest that glucocorticoids play an important role in the regulation of IGF-II expression. The mechanism for glucocorticoid-induced reduction of IGF-II mRNA is still unclear; however, our findings indicate that DEX inhibits IGF-II by causing premature differentiation of the liver.  相似文献   

6.
MiRNAs are a newly discovered class of small noncoding RNAs that regulate gene expression by translational repression and mRNA degradation. It has become evident that miRNAs are involved in many important biological processes, including tissue differentiation and development. The role of miRNAs in the eye is beginning to be explored following their recent detection by miRNA expression analyses. Many of the target genes for these ocular miRNAs remain undefined. This review summarizes the current information about ocular miRNA expression. Future research should focus on the function of ocular miRNAs in eye development.  相似文献   

7.
Muscle is an important target tissue for insulin-like growth factor (IGF) action. We have previously reported that muscle cell differentiation is associated with down-regulation of the IGF-I receptor at the level of gene expression that is concomitant with an increase in the expression and secretion of IGF-II. Furthermore, treatment of myoblasts with IGF-II resulted in a similar decrease in IGF-I receptor mRNA abundance, suggesting an autocrine role of IGF-II in IGF-I receptor regulation. To explore further the role of IGF-II in IGF-I receptor regulation, BC3H-1 mouse muscle cells were exposed to differentiation medium in the presence of basic fibroblast growth factor (FGF), a known inhibitor of myogenic differentiation. FGF treatment of cells resulted in a 50% inhibition of IGF-II gene expression compared to that in control myoblasts and markedly inhibited IGF-II secretion. Concomitantly, FGF resulted in a 60-70% increase in IGF-I binding compared to that in control myoblasts. Scatchard analyses and studies of gene expression demonstrated that the increased IGF-I binding induced by FGF reflected parallel increases in IGF-I receptor content and mRNA abundance. These studies indicate that FGF may up-regulate IGF-I receptor expression in muscle cells through inhibition of IGF-II peptide expression and further support the concept of an autocrine role of IGF-II in IGF-I receptor regulation. In addition, these studies suggest that one mechanism by which FGF inhibits muscle cell differentiation is through inhibition of IGF-II expression.  相似文献   

8.
The development of myopia is associated with scleral remodeling, but it is unclear which factors regulate this process. This study investigated bone morphogenetic protein-2 (BMP-2) expression in the sclera of guinea pigs with lens-induced myopia (LIM) and after recovery from myopia and evaluated the effect of BMP-2 on extracellular matrix (ECM) synthesis in human scleral fibroblasts (HSFs) cultured in vitro. Lens-induced myopia was brought about in two groups of guinea pigs (the lens-induced myopia and myopia recovery groups) by placing -4.00 D lenses on the right eye for three weeks. The left eye served as a contralateral control. In the recovery group, the lenses were removed after one week. The refractive power and axial length of the eyes were measured, and the BMP-2 expression levels in the sclera were measured. After three weeks, the lens-induced eyes acquired relative myopia in both groups of guinea pigs. Immunostaining of the eyeballs revealed significantly decreased BMP-2 expression in the posterior sclera of the myopic eyes compared to the contralateral eyes. One week after lens removal, BMP-2 expression recovered, and no differences were observed between the experimental and contralateral eyes in the recovery group. HSFs were cultured with BMP-2 or transforming growth factor-β1 (TGF-β1). Type I and type III collagen synthesis was significantly up-regulated following BMP-2 treatment in culture after one and two weeks, but the ratio of type III to type I collagen mRNA was not increased. Biosynthesis of glycosaminoglycan (GAG) and aggrecan was increased in HSFs treated with BMP-2. Some chondrogenesis-associated genes expression increased in HSFs treated with BMP-2. From this study, we concluded that BMP-2 is involved in scleral remodeling in the development and recovery of lens-induced myopia.  相似文献   

9.
Vertebrate eye development is a complex multistep process coordinated by signals from the lens, optic cup and periocular mesenchyme. Although chemokines are increasingly being recognized as key players in cell migration, proliferation, and differentiation during embryonic development, their potential role during eye development has not been examined. In this study, we demonstrate by section in situ hybridization that CXCL12 and CXCL14 are expressed during ocular development. CXCL12 is expressed in the periocular mesenchyme, ocular blood vessels, retina, and eyelid mesenchyme, and its expression pattern is conserved between chick and mouse in most tissues. Expression of CXCL14 is localized in the ocular ectoderm, limbal epithelium, scleral papillae, eyelid mesenchyme, corneal keratocytes, hair follicles, and retina, and it was only conserved in the upper eyelid ectoderm of chick and mouse. The unique and non-overlapping patterns of CXCL12 and CXCL14 expression in ocular tissues suggest that these two chemokines may interact and have important functions in cell proliferation, differentiation and migration during eye development.  相似文献   

10.
The insulin-like growth factors are broadly distributed in the human conceptus and are thought to play a role in the growth and differentiation of tissues during development. Using in situ hybridization we have shown that a wide variety of specific cell types within tissues express the gene for insulin-like growth factor II at times of development from 18 days to 14 weeks of gestation. Examination of blastocysts produced by in vitro fertilization showed no expression, thus bracketing the time of first accumulation of IGF-II mRNA to between 5 and 18 days postfertilization. The pattern of IGF-II expression shows specific age-related differences in different tissues. In the kidney, for example, expression is found in the cells of the metanephric blastema which is dramatically reduced as the blastema differentiates. The reverse is also seen, and we have noted an increase in expression of IGF-II in the cytotrophoblast layer of the placenta with gestational age. The sites of expression do not correlate with areas of either high mitotic activity or specific types of differentiation, but the observed pattern of expression in the kidney, adrenal glands and liver suggests an explanation for the abnormally high IGF-II mRNA expression in developmental tumours such as Wilms' tumour.  相似文献   

11.
Bullwhip and mini-bullwhip cells are unconventional types of retinal neurons that utilize the neuropeptides glucagon, glucagon-like peptide 1 (GLP1) and substance P. These cells have been implicated in regulating the proliferation of neural progenitors in the circumferential marginal zone (CMZ) of the chicken retina. The purpose of this study was to investigate the roles of the bullwhip cells in regulating ocular size and shape. We found that intravitreal delivery of colchicine at postnatal day 7 destroys the vast majority (approximately 98%) of the bullwhip and mini-bullwhip cells and their peptidergic terminals that are concentrated in the CMZ near the equator of the eye. Interestingly, colchicine-treatment resulted in excessive ocular growth that involved the expansion of equatorial diameter, but not axial length. Intraocular injections of glucagon completely prevented the equatorial expansion that occurs with colchicine-treatment. In eyes with undamaged retinas, exogenous glucagon suppressed equatorial eye growth, whereas glucagon receptor antagonists caused excessive equatorial growth. Furthermore, visual stimuli that increase or decrease rates of ocular growth caused a down- or up-regulation, respectively, of the immediate early gene Egr1 in the bullwhip cells; indicating that the activity of the bullwhip cells is regulated by growth-guiding visual cues. We found that the glucagon receptor was expressed by cells in the fibrous and cartilaginous sclera in equatorial regions of the eye. Taken together, these findings suggest that glucagon peptide released from the terminals of the bullwhip and mini-bullwhip cells regulates the growth of the equatorial sclera in a vision-dependent manner. Although the bullwhip and mini-bullwhip cells are not abundant, less than 1000 cells per retina, their influence on the development of the eye is substantial and includes vision-guided ocular growth.  相似文献   

12.
Insulin-like growth factors (IGFs) are potent mitogens for a variety of cancer cells in vitro. A paracrine/autocrine role of IGF-II in the growth of breast and prostate cancer cells has been suggested. Information on cell-type-specific IGF-II expression in vivo in the breast and prostate is, however, limited. Thus, cell types expressing IGF-II mRNA and protein in tumors were identified by in situ hybridization and immunohistochemistry. Of 36 prostate, 17 breast, and 10 bladder cancers, and 9 paraganglioma tissues examined, IGF-II was expressed in more than 50% of prostate, breast, and bladder tumors, and in 100% of paraganglioma tumors. Expression levels of IGF-II were highest in the paraganglioma and bladder followed by prostate and breast tumors. In all the tumors expressing IGF-II, both mRNA and protein were localized to malignant cells, expression in the stroma being minimal. Since previous studies had indicated that an incompletely processed form of 15-kDa IGF-II exhibited higher mitogenic potency than the completely processed 7.5-kDa IGF-II form, the quantity and size of IGF-II proteins expressed in these tumors were analyzed by Western immunoblotting. Greater expression of 15-kDa IGF-II relative to the 7.5-kDa IGF-II form was clearly demonstrated in all six prostate cancers and in half of the two breast and four bladder cancers examined. The results are consistent with the hypothesis that the 15-kDa form of IGF-II expressed in cancerous cells contributes to autocrine cancer cell growth in vivo. Received: 11 June 1997 / Accepted: 22 August 1997  相似文献   

13.
The development of high myopia is associated with altered scleral extracellular matrix biochemistry. Previous studies highlight the importance of collagen turnover in this process, yet it is unclear which factors control scleral remodeling. This study used a mammalian model of myopia to investigate the capacity of TGF (transforming growth factor)-beta1, -beta2, and -beta3 to influence scleral remodeling in myopia. RT-PCR confirmed the presence of all mammalian TGF-beta isoforms in scleral tissue and scleral fibroblasts. Myopia was experimentally induced via monocular deprivation of pattern vision, and animals were allocated to two groups depending on the duration of treatment (1 or 5 days). Down-regulation of each isoform was apparent after only 1 day of myopia development (TGF-beta1, -32%; TGF-beta2, -27%; TGF-beta3, -42%). Whereas the decrease in TGF-beta1 and -beta3 expression was relatively constant between the two time points, differential down-regulation of TGF-beta2 was found between days 1 (-27%) and 5 (-50%). In vitro experiments, using primary scleral fibroblasts, demonstrated the capacity of all isoforms to increase collagen production in a dose-dependent manner. Changes in TGF-beta levels, which mimicked those during myopia induction, caused an approximately 15% reduction in collagen synthesis, which is qualitatively similar to those previously reported in vivo. These data represent the first demonstration of TGF-beta3 expression in the sclera and implicate all three TGF-beta isoforms in the control of scleral remodeling during myopia development. In addition, the early alterations in TGF-beta expression levels may reflect a role for these cytokines in mediating the retinoscleral signal that controls myopic eye growth.  相似文献   

14.
Premature cranial suture fusion, or craniosynostosis, can result in gross aberrations of craniofacial growth. The biology underlying cranial suture fusion remains poorly understood. Previous studies of the Sprague-Dawley rat posterior frontal suture, which fuses at between 12 and 20 days, have suggested that the regional dura mater beneath the cranial suture directs the overlying suture's fusion. To address the dura-suture paracrine signaling that results in osteogenic differentiation and suture fusion, the authors investigated the possible role of insulin-like growth factors (IGF) I and II. The authors studied the temporal and spatial patterns of the expression of IGF-I and IGF-II mRNA and IGF-I peptide and osteocalcin (bone morphogenetic protein-4) protein in fusing posterior frontal rat sutures, and they compared them with patent coronal (control) sutures. Ten Sprague-Dawley rats were studied at the following time points: 16, 18, and 20 days of gestation and 2, 5, 10, 15, 20, 30, 50, and 80 days after birth (n = 110). Posterior frontal and coronal (patent, control) sutures were analyzed for IGF-I and IGF-II mRNA expression by in situ hybridization by using 35S-labeled IGF-I and IGF-II antisense riboprobes. Levels of IGF-I and IGF-II mRNA were quantified by counting the number of autoradiograph signals per cell. IGF-I and osteocalcin immunoreactivity were identified by avidin-biotin peroxidase immunohistochemistry. IGF-I and IGF-II mRNA were expressed in dural cells beneath fusing sutures, and the relative mRNA abundance increased between 2 and 10 days before initiation of fusion. Subsequently, IGF-I and IGF-II mRNA were detected in the suture connective tissue cells at 15 and 20 days during the time of active fusion. In contrast, within large osteoblasts of the osteogenic front, the expression of IGF-I and IGF-II mRNA was minimal. However, IGF-I peptide and osteocalcin protein were intensely immunoreactive within these osteoblasts at 15 days (during the period of suture fusion). These data suggest that the dura-suture interaction may be signaled in a paracrine fashion by dura-derived growth factors, such as IGF-I and IGF-II. These peptides, in turn, stimulate nearby osteoblasts to produce bone-promoting growth factors, such as osteocalcin.  相似文献   

15.
Recent studies show that exposure to ultraviolet (UV) light suppresses ocular elongation, which causes myopia development. However, the specific mechanisms of this process have not been elucidated. A UV-sensor, Opsin 5 (Opn5) mRNA was shown to be present in extraretinal tissues. To test the possibility that UV-signals mediated by Opn5 would have a direct effect on the outer connective tissues of the eye, we first examined the expression patterns of a mammalian type Opn5 (Opn5m) in the late-embryonic chicken eye. Quantitative PCR showed Opn5m mRNA expression in the cornea and sclera. The anti-Opn5m antibody stained a small subset of cells in the corneal stroma and fibrous sclera. We next assessed the effect of UV-A (375 nm) irradiation on the chicken fibroblast cell line DF-1 overexpressing chicken Opn5m. UV-A irradiation for 30 min significantly increased the expression of Early growth response 1 (Egr1), known as an immediate early responsive gene, and of Matrix metalloproteinase 2 (Mmp2) in the presence of retinal chromophore 11-cis-retinal. In contrast, expression of Transforming growth factor beta 2 and Tissue inhibitor of metalloproteinase 2 was not significantly altered. These results indicate that UV-A absorption by Opn5m can upregulate the expression levels of Egr1 and Mmp2 in non-neuronal, fibroblasts. Taken together with the presence of Opn5m in the cornea and sclera, it is suggested that UV-A signaling mediated by Opn5 in the extraretinal ocular tissues could influence directly the outer connective tissues of the chicken late-embryonic eye.  相似文献   

16.
17.
Insulin-like growth factor (IGF)-I and IGF-II play major roles in the regulation of skeletal muscle growth and differentiation, and both are locally expressed in muscle cells. Recent studies have demonstrated that IGF-II up-regulates its own gene expression during myogenesis and this auto-regulatory loop is critical for muscle differentiation. How local IGF-I is regulated in this process is unclear. Here, we report that while IGF-II up-regulated its own gene expression, it suppressed IGF-I gene expression during myogenesis. These opposite effects of IGF-II on IGF-I and IGF-II genes expression were time dependent and dose dependent. It has been shown that IGFs activate the PI3K-Akt-mTOR, p38 MAPK, and Erk1/2 MAPK pathways. In myoblasts, we examined their role(s) in mediating the opposite effects of IGF-II. Our results showed that both the PI3K-Akt-mTOR and p38 MAPK pathways played critical roles in increasing IGF-II mRNA expression. In contrast, mTOR was required for down-regulating the IGF-I gene expression by IGF-II. In addition, Akt, Erk1/2 MAPK, and p38 MAPK pathways were also involved in the regulation of basal levels of IGF-I and IGF-II genes during myogenesis. These findings reveal a previously unrecognized negative feedback mechanism and extend our knowledge of IGF-I and IGF-II gene expression and regulation during myogenesis.  相似文献   

18.
The localization of mRNAs for insulin-like growth factors I (IGF-I) and II (IGF-II) and the type 1 IGF receptor (IGF-1R) in bovine follicles and corpora lutea was determined using in situ hybridization on sectioned ovaries collected from nonpregnant, cyclic Holstein cows in either the follicular (n = 3) or luteal (n = 5) phases of the cycle. Concentrations were measured as absorbance units of individual regions or follicles from autoradiographs. There was intense follicular expression of mRNAs encoding IGF-II and IGF-1R. For mRNA encoding IGF-II, expression was significantly higher in smaller follicles (< 5 mm diameter, P < 0.01) and, in this size range, expression was significantly greater in healthy compared with atretic follicles (P < 0.01). For mRNA encoding IGF-1R, there was no effect of size but concentrations were again significantly greater in healthy compared with atretic follicles of < 5 mm. In medium (5-10 mm) and large (> 10 mm) follicles, there was no effect of health for expression of either IGF-II or IGF-1R. mRNA encoding IGF-II was found exclusively in the theca, whereas mRNA encoding IGF-1R was confined to the granulosa layer. IGF-I expression was not detectable in 83% of the 53 follicles examined. In the remaining 17% of follicles, expression was very low and was unrelated to size or state of atresia. mRNAs encoding IGF-I, -II and IGF-1R were all present in the corpus luteum, whereas only those for IGF-II and IGF-1R were found in ovarian stroma. These data indicate that the insulin-like growth factors play a significant role in follicular and luteal development in the bovine ovary. Locally produced IGF-II is probably an important regulator of follicular growth, whereas most of the IGF-I present in follicular fluid is likely to be derived from the circulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号