首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduced African grasses are invading Neotropical savannas and displacing the native herbaceous community. This work, which is part of a program to understand the success of the African grasses, specifically investigates whether introduced and native grasses differ in their water relations. The water relations of the native Trachypogon plumosus and the successful invader Hyparrhenia rufa were studied in the field during two consecutive years in the seasonal savannas of Venezuela. The two C4 grasses differed clearly in their responses to water stress. H. rufa consistently had higher stomatal conductance, transpiration rate, leaf water and osmotic potential and osmotic adjustment than the native T. plumosus. Also, leaf senescence occurred much earlier during the dry season in H. rufa. Both grasses showed a combination of water stress evasion and tolerance mechanisms such as stomatal sensitivity to atmospheric or soil water stress, decreased transpiring area and osmotic adjustment. Evasion mechanisms are more conspicuous in H. rufa whereas T. plumosus is more drought tolerant and uses water more conservatively. The evasion mechanisms and oportunistic use of water by H. rufa, characteristic of invading species, contribute to, but only partially explain, the success of this grass in the Neotropical savannas where it displaces native plants from sites with better water and nutrient status. Conversely, the higher water stress tolerance of t. plumosus is consistent with its capacity to resist invasion by alien grasses on shallow soils and sites with poorer nutrient and water status.  相似文献   

2.
The ability of plants to rapidly replace photosynthetic tissues following defoliation represents a resistance strategy referred to as herbivory tolerance. Rapid reprioritization of carbon allocation to regrowing shoots at the expense of roots following defoliation is a widely documented tolerance mechanism. An experiment was conducted in a controlled environment to test the hypothesis that herbivory-sensitive perennial grasses display less flexibility in reprioritizing carbon allocation in response to defoliation than do grasses possessing greater herbivory tolerance. An equivalent proportion of shoot biomass (60% dry weight) was removed from two C4 perennial grasses recognized as herbivory-sensitive, Andropogon gerardii and Schizachyrium scoparium, and two C4 perennial grasses recognized as herbivory-tolerant, Aristida purpurea and Bouteloua rigidiseta. Both defoliated and undefoliated plants were exposed to 13CO2 for 30 min, five plants per species were harvested at 6, 72 and 168 h following labeling, and biomass was analyzed by isotope ratio mass spectrometry. The tallgrass, A. geraiddii, exhibited inflexible allocation priorities while the shortgrass, B. rigidiseta, exhibited flexible allocation priorities in response to defoliation which corresponded with their initial designations as herbivory-sensitive and herbivory-tolerant species, respectively. A. gerardii had the greatest percentage and concentration of 13C within roots and lowest percentage of 13C within regrowth of the four species evaluated. In contrast, B. rigidiseta had a greater percentage of 13C within regrowth than did A. gerardii, the greatest percentage of 13C within new leaves of defoliated plants, and the lowest concentration of 13C within roots follwing defoliation. Although both midgrasses, S. scoparium and A. purpurea, demonstrated flexible allocation priorities in response to defoliation, they were counter to those stated in the initial hypothesis. The concentration of 13C within new leaves of S. scoparium increased in response to a single defoliation while the percentage and concentration of 13C within roots was reduced. A. purpurea was the only species in which the percentate of 13C within new leaves decreased while the percentage of 13C within roots increased following defoliation. The most plausible alternative hypothesis to explain the inconsistency between the demonstrated responsiveness of allocation priorities to defoliation and the recognized herbivory resistance of S. scoparium and A. purpurea is that the relative ability of these species to avoid herbivory may make an equal or greater contribution to their overall herbivory resistance than does herbivory tolerance. Selective herbivory may contribute to S. scoparium's designation as a herbivorysensitive species even though it possesses flexible allocation priorities in response to defoliation. Alternatively, the recognized herbivory resistance of A. purpurea may be a consequence of infrequent and/or lenient herbivory associated with the expression of avoidance mechanisms, rather than the expression of tolerance mechanisms. A greater understanding of the relative contribution of tolerance and avoidance strategies of herbivory resistance are required to accurately interpret how herbivory influences plant function, competitive interactions, and species abundance in grazed communities.  相似文献   

3.
Summary The growth and photosynethetic responses to atmospheric CO2 enrichment of 4 species of C4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO2 enrichment would yield proportionally greater growth enhancement in the C4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 l 1-1 CO2 and 1,000 or 150 mol m-2 s-1 photosynthetic photon flux density (PPFD). An increase in CO2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO2. Plants grown in CO2-enriched atmosphere had lower photosynthetic capacity relative to the low CO2 grown plants when exposed to lower CO2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO2 compensation point for photosynthesis.  相似文献   

4.
In a seasonally dry tropical region the water use efficiency (WUE) of three grasses (C3 winter annualPolypogon monspeliensis, C4 perennialDichanthium annulatum and C4 warm seasonal annualEchinochloa colonum) was evaluated during summer and winter under nine experimental conditions (3 soil moisture×3 herbage removal). Generally leaf water status and transpiration rate decreased with soil moisture stress and increased with clipping intensity. During winter the transpiration rate of Dichanthium was much lower than that of Polypogon and its own rate in summer. Both soil moisture stress and clipping intensity increased the WUE in all instances. Despite differences in photosynthetic type, growing season and life form, these grasses exhibited broadly similar positive relationships, across nine treatments for WUE: soil moisture stress, and water consumption: production. The range of WUE (g. mm–1) calculated on TNP through the nine treatments was: summer—Dichanthium 2.9–10.0, Echinochloa 2.0–6.7; winter—Dichanthium 4.3–36.3, Polypogon 1.9–12.0.  相似文献   

5.
The quantum yield for CO2 uptake was measured in C3 and C4 monocot species from several different grassland habitats. When the quantum yield was measured in the presence of 21% O2 and 340 cm3 m-3 CO2, values were very similar in C3 monocots, C3 dicots, and C4 monocots (0.045–0.056 mole CO2 · mole-1 quanta absorbed). In the presence of 2% O2 and 800 cm3 m-3 CO2, enhancements of the quantum yield values occurred for the C3 plants (both monocots and dicots), but not for C4 monocots. A dependence of the quantum yield on leaf temperature was observed in the C3 grass, Agropyron smithii, but not in the C4 grass, Bouteloua gracilis, in 21% O2 and 340 cm3 m-3 CO2. At leaf temperatures between 22–25°C the quantum yield values were approximately equal in the two species.  相似文献   

6.
The C(4) photosynthetic pathway involves the assimilation of CO(2) by phosphoenolpyruvate carboxylase (PEPC) and the subsequent decarboxylation of C(4) acids. The enzymes of the CO(2) concentrating mechanism could be affected under water deficit and limit C(4) photosynthesis. Three different C(4) grasses were submitted to gradually induced drought stress conditions: Paspalum dilatatum (NADP-malic enzyme, NADP-ME), Cynodon dactylon (NAD-malic enzyme, NAD-ME) and Zoysia japonica (PEP carboxykinase, PEPCK). Moderate leaf dehydration affected the activity and regulation of PEPC in a similar manner in the three grasses but had species-specific effects on the C(4) acid decarboxylases, NADP-ME, NAD-ME and PEPCK, although changes in the C(4) enzyme activities were small. In all three species, the PEPC phosphorylation state, judged by the inhibitory effect of L: -malate on PEPC activity, increased with water deficit and could promote increased assimilation of CO(2) by the enzyme under stress conditions. Appreciable activity of PEPCK was observed in all three species suggesting that this enzyme may act as a supplementary decarboxylase to NADP-ME and NAD-ME in addition to its role in other metabolic pathways.  相似文献   

7.
Summary Two C3 grasses (Hordeum vulgare L., Avena sativa L.) and two C4 grasses (Panicum miliaceum L., Panicum crus-galli L.) were cultivated in standard soil in the open air in pure cultures and in various mixed cultures at low and high nitrogen fertilization levels. After three months the dry weight, length and nitrogen content of the aboveground and below-ground parts of the plants and the shoot/root ratios were determined. Hordeum vulgare was the most successful species irrespective of the nitrogen fertilization level, and also exhibited in most cases the highest nitrogen concentrations. Panicum miliaceum, on the other hand, was the species least able to compete. The production of biomass was reduced in cultures growing under nitrogen starvation conditions, this phenomenon being more pronounced with respect to the C4 than to the C3 species. The decrease in the production of biomass at low N conditions was most drastic with Panicum crus-galli, the species with the lowest nitrogen content and thus assumed to be best adapted to nitrogen starvation conditions. In cultures growing at low nitrogen fertilization levels the shoot/root ratios of all species.shifted in favour of an increasing root proportion. The extent of this shift, however, differed from species to species.  相似文献   

8.
9.
Summary We tested the hypothesis that C4 grasses are inferior to C3 grasses as host plants for herbivorous insects by measuring the relative performance of larvae of a graminivorous lepidopteran, Paratrytone melane (Hesperiidae), fed C3 and C4 grasses. Relative growth rates and final weights were higher in larvae fed a C3 grass in Experiment I. However, in two additional experiments, relative growth rates and final weights were not significantly different in larvae fed C3 and C4 grasses. We examined two factors which are believed to cause C4 grasses to be of lower nutritional value than C3 grasses: foliar nutrient levels and nutrient digestibility. In general, foliar nutrient levels were higher in C3 grasses. In Experiment I, protein and soluble carbohydrates were digested from a C3 and a C4 grass with equivalent efficiencies. Therefore, differences in larval performance are best explained by higher nutrient levels in the C3 grass in this experiment. In Experiment II, soluble carbohydrates were digested with similar efficiencies from C3 and C4 grasses but protein was digested with greater efficiency from the C3 grasses. We conclude (1) that the bundle sheath anatomy of C4 grasses is not a barrier to soluble carbohydrate digestion and does not have a nutritionally significant effect on protein digestion and (2) that P. melane may consume C4 grasses at compensatory rates.  相似文献   

10.
In Venezuela, the alien grasses Melinis minutiflora Beauv. and Hyparrhenia rufa (Nees.) Stapf tend to displace the native savanna plant community dominated by Trachypogon plumosus (Humb. and Bonpl.) Nees. This occurs in either relatively wetter and fertile highland savannas or in drier and less fertile lowland savannas. Although the native and aliens are perennial C4 grasses, higher net assimilation leaf biomass per plant and germination rate of the latter are some causes for their higher growth rates and for their competitive success. The objective of this study is to compare seasonal tissue energy, N, P and K concentrations and the calculated construction costs (CC) between the native grass and either one of the alien grasses from lowland and highland savannas. We predict that, in order to out-compete native plants, alien grasses should be more efficient in resource use as evidenced by lower tissue energy and nutrient concentrations and CC.Tissue energy and nutrient concentration were measured throughout the year and compared between M. minutiflora and the co-occurring local population of T. plumosus in a highland savanna and between H. rufa and its neighbor local population of T. plumosus in a lowland savanna. CC was calculated from energy, N and ash concentrations considering ammonium as the sole N source. Differences between co-occurring species, T. plumosus populations, seasons, and organs were analyzed with ANOVA.Highland and lowland grasses differed in concentration and allocation of energy and nutrients whereas the differences between alien and native grasses were specific for each pair considered. Highland grasses had higher energy, N, P and CC than lowland grasses. These variables were always lowest in the culms. In the more stressed lowland site, tissue energy and nutrient concentrations decreased significantly during the dry season except in the roots of both grasses which had the highest energy and nutrients concentrations during the drought. This seasonal response was more marked in the local lowland population of T. plumosus in which maximum CC alternated seasonally between leaves and roots. Energy and nutrient concentrations and CC were the lowest in H. rufa. In the lowland savannas, the higher efficiency of resource use in the invader grass contributes to its higher competitive success through increased growth rate. In the highlands, overall tissue energy concentration and CC, but not N nor P concentration, were lower in the fast growing M. minutiflora but seasonal differences were lacking. The higher leaf CC in T. plumosus can be attributed to the higher proportion of sclerenchyma tissue which is more expensive to construct. Considering CC, both fast growing alien grasses are more efficient in resource use than the co-occurring native grass. However, the role of CC explaining the competitive success of the former, through higher growth rates, is more evident in the more stressful environment of the lowland savanna.  相似文献   

11.
Baruch Z  Jackson RB 《Oecologia》2005,145(4):522-532
The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO2 concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C4 grass (Trachypogon plumosus) and two African C4 grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO2 concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO2 increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO2, the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g−1 week−1 vs 0.25 g g−1 week−1). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO2 than did the native grass (biomass increases of 21–47% compared with decreases of 13–51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO2 promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO2 to fincreasesavor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO2 suggests further in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.  相似文献   

12.

Background and Aims

The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response.

Methods

Six species of locally co-occurring grasses, C3 species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types.

Key Results

Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance.

Conclusions

Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought.  相似文献   

13.
The potential for C4 photosynthesis was investigated in five C3-C4 intermediate species, one C3 species, and one C4 species in the genus Flaveria, using 14CO2 pulse-12CO2 chase techniques and quantum-yield measurements. All five intermediate species were capable of incorporating 14CO2 into the C4 acids malate and aspartate, following an 8-s pulse. The proportion of 14C label in these C4 products ranged from 50–55% to 20–26% in the C3-C4 intermediates F. floridana Johnston and F. linearis Lag. respectively. All of the intermediate species incorporated as much, or more, 14CO2 into aspartate as into malate. Generally, about 5–15% of the initial label in these species appeared as other organic acids. There was variation in the capacity for C4 photosynthesis among the intermediate species based on the apparent rate of conversion of 14C label from the C4 cycle to the C3 cycle. In intermediate species such as F. pubescens Rydb., F. ramosissima Klatt., and F. floridana we observed a substantial decrease in label of C4-cycle products and an increase in percentage label in C3-cycle products during chase periods with 12CO2, although the rate of change was slower than in the C4 species, F. palmeri. In these C3-C4 intermediates both sucrose and fumarate were predominant products after a 20-min chase period. In the C3-C4 intermediates, F. anomala Robinson and f. linearis we observed no significant decrease in the label of C4-cycle products during a 3-min chase period and a slow turnover during a 20-min chase, indicating a lower level of functional integration between the C4 and C3 cycles in these species, relative to the other intermediates. Although F. cronquistii Powell was previously identified as a C3 species, 7–18% of the initial label was in malate+aspartate. However, only 40–50% of this label was in the C-4 position, indicating C4-acid formation as secondary products of photosynthesis in F. cronquistii. In 21% O2, the absorbed quantum yields for CO2 uptake (in mol CO2·[mol quanta]-1) averaged 0.053 in F. cronquistii (C3), 0.051 in F. trinervia (Spreng.) Mohr (C4), 0.052 in F. ramosissima (C3-C4), 0.051 in F. anomala (C3-C4), 0.050 in F. linearis (C3-C4), 0.046 in F. floridana (C3-C4), and 0.044 in F. pubescens (C3-C4). In 2% O2 an enhancement of the quantum yield was observed in all of the C3-C4 intermediate species, ranging from 21% in F. ramosissima to 43% in F. pubescens. In all intermediates the quantum yields in 2% O2 were intermediate in value to the C3 and C4 species, indicating a co-function of the C3 and C4 cycles in CO2 assimilation. The low quantum-yield values for F. pubescens and F. floridana in 21% O2 presumably reflect an ineffcient transfer of carbon from the C4 to the C3 cycle. The response of the quantum yield to four increasing O2 concentrations (2–35%) showed lower levels of O2 inhibition in the C3-C4 intermediate F. ramosissima, relative to the C3 species. This indicates that the co-function of the C3 and C4 cycles in this intermediate species leads to an increased CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase and a concomitant decrease in the competitive inhibition by O2.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate  相似文献   

14.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

15.
The interaction between physiological stress and arthropod herbivory was studied using two perennial species of Hypericum. Seedlings of H. perforatum, a herb introduced to Australia and weedy in places, and H. gramineum, an indigenous species, were subjected to water stress and/or herbivory by a mite, Aculus hyperici and an aphid, Aphis chloris. Both arthropods have recently been released in Australia for biological control of H. perforatum. Individually, stresses reduced measures of plant growth. Combinations of the three stresses decreased plant growth by slightly more than the product of their separate effects, suggesting that there is a weak positive interaction exacerbating the damage caused by each stress. Seedlings of the target weed and the non-target indigenous species were equally affected by the arthropods. The implications for weed biological control are discussed.  相似文献   

16.
Plants produce various compounds in response to water deficit. Here, the presence and identification of a drought-inducible non-protein amino acid in the leaves of two C4 grasses is first reported. The soluble amino acids extracted from the leaves of three different species were measured by high-performance liquid chromatography of derivatives formed with o-phthaldialdehyde and β-mercaptoethanol. One amino acid that increased in amount with drought stress had a retention time not corresponding to any common amino acid. Its identity was determined by metabolite profiling, using 1H NMR and GC-MS. This unusual amino acid was present in the dehydrated leaves of Cynodon dactylon (L.) Pers. and Zoysia japonica Steudel, but was absent from Paspalum dilatatum Poir. Its identity as 2-amino-5-hydroxypentanoic acid (5-hydroxynorvaline, 5-HNV) was confirmed by synthesis and co-chromatography of synthetic and naturally occurring compounds. The amount of 5-HNV in leaves of the more drought tolerant C4 grasses, C. dactylon and Z. japonica, increased with increasing water deficit; therefore, any benefits from this unusual non-protein amino acid for drought resistance should be further explored.  相似文献   

17.
J. C. Vogel  A. Fuls  A. Danin 《Oecologia》1986,70(2):258-265
Summary The relation between photosynthetic pathway and habitat of the grass species recorded in the desert regions of Sinai, Negev, and Judea was investigated. The climatic conditions and micro-environments in the study area vary considerably, and the distribution of the various species is found to conform to specific patterns which reveal the adaptive advantages of the different photosynthetic pathways. There is also a distinct correlation between the phytogeographic origin of the grass species and the photosynthetic pathways that they utilize.The survey shows that the majority of the grass species in the region are of the C3 type and all except one of these species belong to the Holarctic domain. This is in accordance with the fact that the region forms part of the Mediterranean winter rainfall regime and that C3 species have an adaptive advantage where minimum temperatures are low during the winter growing season.The occurence of C4 species increases with decreasing rainfall and they dominate in those districts where temperatures are high throughout the year. These C4 grasses are of both Holarctic and Palaeotropic origin according to the classification adopted here, but they are essentially all elements of the Saharo-Arabian, Irano-Turanian, Sudanian, or Tropical phytogeographic regions and are not typical of the Mediterranean or Euro-Siberian floras. The plants with multi-regional distributions that occur in Mediterranean communities may well be intrusive.Analysis of the three subtypes of the C4 species suggests that the malate-forming NADP-me grasses grow where water stress is not a dominating factor, while the aspartateforming NAD-me grasses are more successful under xeric conditions. The PEP-ck species are not abundant and form an intermediate group between the NADP-me and NAD-me subtypes.  相似文献   

18.
Osamu Ueno 《Planta》1996,199(3):382-393
Eleocharis vivipara Link is a unique amphibious leafless sedge. The terrestrial form has Kranz anatomy and the biochemical traits of C4 plants while the submerged form develops structural and biochemical traits similar to those of C3 plants. The structural features of the culms, which are the photosynthetic organs, of the two forms were examined and compared. The culms of the terrestrial form have mesophyll cells and three bundle sheaths which consist of three kinds of cell, namely, the innermost Kranz cells that contain large numbers of organelles, the middle mestome sheath cells that lack chloroplasts, and the outermost parenchyma sheath cells that contain chloroplasts. The culms of the submerged form had a tendency towards reduction in numbers and size of Kranz cells and vascular bundles, as compared to the terrestrial form, and they had spherical mesophyll cells that were tightly packed without intercellular spaces inside the epidermis. The submerged form had a higher ratio of cross-sectional area of mesophyll cells plus parenchyma sheath cells to that of Kranz cells than the terrestrial form. The difference was mainly due to a decrease in the number and the size of the Kranz cells and to a marked increase in the size of the mesophyll cells and the parenchyma sheath cells in the submerged form, as compared to the terrestrial form. The Kranz cells of the terrestrial form had basically the structural characteristics of plants of the NAD-malic enzyme type, with the exception of the intracellular location of organelles. The Kranz cells of the submerged form included only a few organelles, and the percentage of organelles partitioned to the Kranz cells was significantly smaller in the submerged form than in the terrestrial form. In addition, the size of chloroplasts of the Kranz cells was 60–70% of that of the terrestrial form. These structural differences between the two forms may be related to the functional differences in their mechanisms of photosynthesis.Abbreviations KC Kranz cell - MC mesophyll cell - PSC parenchyma sheath cell - NAD-ME NAD-malic enzyme - VB vascular bundle This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology).  相似文献   

19.
Grasses using the C4 photosynthetic pathway dominate grasslands and savannahs of warm regions, and account for half of the species in this ecologically and economically important plant family. The C4 pathway increases the potential for high rates of photosynthesis, particularly at high irradiance, and raises water-use efficiency compared with the C3 type. It is therefore classically viewed as an adaptation to open, arid conditions. Here, we test this adaptive hypothesis using the comparative method, analysing habitat data for 117 genera of grasses, representing 15 C4 lineages. The evidence from our three complementary analyses is consistent with the hypothesis that evolutionary selection for C4 photosynthesis requires open environments, but we find an equal likelihood of C4 evolutionary origins in mesic, arid and saline habitats. However, once the pathway has arisen, evolutionary transitions into arid habitats occur at higher rates in C4 than C3 clades. Extant C4 genera therefore occupy a wider range of drier habitats than their C3 counterparts because the C4 pathway represents a pre-adaptation to arid conditions. Our analyses warn against evolutionary inferences based solely upon the high occurrence of extant C4 species in dry habitats, and provide a novel interpretation of this classic ecological association.  相似文献   

20.
Clonal integration and effects of simulated herbivory in old-field perennials   总被引:12,自引:0,他引:12  
Summary We compared the growth, phenology and leaf demography of partly defoliated, connected shoots with that of partly defoliated, severed shoots in four old-field perennials (Solidago canadensis, S. altissima, S. gigantea, Aster lanceolatus) with differing genet architectures (rhizome systems), in a common garden and in the field. Our main hypothesis was that defoliation would have fewer negative effects on shoot performance if shoots were connected than if their rhizomes were severed. Since degree of clonal integration is related to differences in genet architecture, our second hypothesis was that the effects of defoliation would be less pronounced in more integrated than in less integrated clones. Removing about 50% of the total leaf area from shoots had different effects depending on plant species, shoot density, and in particular whether rhizome connections between shoots were left intact or severed. In agreement with our prediction, experimentally isolated shoots in the field or in high density clumps in the garden suffered the most from defoliation, while shoots with intact connections or in low density clumps suffered the least. Our second prediction was neither confirmed nor falsified in the present study. Solidago altissima showed overcompensation in response to simulated herbivory in the common garden, i.e. defoliated shoots grew faster and were larger at harvest than their non-defoliated neighbours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号