首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Here we present studies on the antioxidant status of a semi-natural grassland community, permanently growing in mini-FACE rings under elevated concentrations of atmospheric CO2 (560 μmol mol−1). In general, in leaves of Dactylis glomerata L. and Trifolium repens L., no differences between ambient and elevated CO2 were detected as concerns protein content, activity of oxidant-scavenging enzymes (catalase, superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase), and lipid peroxidation. The activity of antioxidant-regenerating enzymes (monodehydroascorbate reductase, dehydroascorbate reductase and glutathione disulfide reductase) and the content of antioxidants (ascorbic acid, dehydroascorbic acid, reduced glutathione and glutathione disulfide) showed remarkable variability between leaves from plants grown in ambient and CO2-enriched mini-FACE rings. Thus, in general it can be concluded that the effects of elevated CO2 at environmentally relevant concentrations on the leaf antioxidant status of a grassland community are extremely variable, species-specific and rather limited.  相似文献   

2.
高浓度二氧化碳和臭氧对蒙古栎叶片活性氧代谢的影响   总被引:3,自引:0,他引:3  
利用开顶箱熏蒸法,研究了高浓度O3(≈80 nmol·mol-1)和高浓度CO2(≈700 μmol·mol-1)及其复合处理对蒙古栎叶片活性氧代谢的影响.结果表明:高浓度O3显著增加了蒙古栎叶片超氧阴离子(O2)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量和电解质外渗率(P<0.05),显著降低了超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)含量(P<0.05).高浓度CO2对蒙古栎叶片活性氧代谢影响不显著.高浓度O3和CO2复合处理的叶片O2产生速率、H2O2和MDA含量和电解质外渗率上升不明显,说明高浓度CO2缓解了高浓度O3对蒙古栎叶片的氧化胁迫.复合处理的叶片SOD、CAT、APX活性以及AsA和总酚含量显著高于O3处理的叶片(P<0.05),说明高浓度CO2缓解了高浓度O3对叶片抗氧化系统的消极影响.  相似文献   

3.
During one growing period, 5-year-old spruce trees (Picea abies L., Karst.) were exposed in environmental chambers to elevated concentrations of carbon dioxide (750 cm3 m?3) and ozone (008 cm3 m?3) as single variables or in combination. Control concentrations of the gases were 350cm3 m?3CO2 and 0.02 cm3 m ?3 ozone. To investigate whether an elevated CO2 concentration can prevent adverse ozone effects by reducing oxidative stress, the activities of the protective enzymes superoxide dismutase, catalase and peroxidase were determined. Furthermore, shoot biomass, pigment and protein contents of two needle age classes were investigated. Ozone caused pigment reduction and visible injury in the previous year's needles and growth reduction in the current year's shoots. In the presence of elevated concentrations of ozone and CO2, growth reduction in the current year's shoots was prevented, but emergence of visible damage in the previous year's needles was only delayed and pigment reduction was still found. Elevated concentrations of ozone or CO2 as single variables caused a significant reduction in the activities of superoxide dismutase and catalase in the current year's needles. Minimum activities of superoxide dismutase and catalase and decreased peroxidase activities were found in both needle age classes from spruce trees grown at enhanced concentrations of both CO2 and ozone. These results suggest a reduced tolerance to oxidative stress in spruce trees under conditions of elevated concentrations of both CO2 and ozone.  相似文献   

4.
Potted one-year-old plants of Thymus vulgaris L. (thyme, Lamiaceae, C3 metabolism), were grown for three months (10 June–10 September, 2004) in a “mini-free-air-CO2-enrichment” (“mini-FACE”) system, under 500 μmol mol?1 and ambient concentrations of atmospheric carbon dioxide (CO2). Compared to ambient CO2, elevated CO2 stimulated leaf superoxide dismutase (SOD, EC 1.15.1.1) activity only at the first sampling-time (July), followed by no variation or even a trend of decreased activity on the other two sampling-times (August and September). Under high CO2, guaiacol peroxidase (GPX, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.6) leaf activities showed no variation or drop throughout the duration of the experiment. By contrast, under elevated CO2, leaf glutathione reductase (GR, EC 1.6.4.2) activity increased on all the sampling-times, and also a duration-dependent upward trend of glutathione (GSH) content was recorded, with this increase becoming significant – compared with ambient CO2 – at the third sampling-time (September). Simultaneously, leaves from plants grown under high CO2 showed a marked increase in essential oil yield, with slight increments in phenolic component and decrements in mono- and sesquiterpene components. Also, a drop in thiobarbituric acid reactive substances (TBARS) content under elevated CO2 was displayed. Thus, in general, the results reported here point to a downregulation of leaf antioxidant enzymes under elevated CO2, supporting the notion of reduced reactive oxygen species (ROS) formation under these circumstances. Relying instead on antioxidant-regenerating enzymes, namely GR, fairly high GSH content and essential oils, might be a ‘low cost’ life strategy for growth under elevated CO2, not requiring synthesis/activation of energy-intensive and expensive metabolic processes.  相似文献   

5.
Winter wheat (Triticum aestivum L., cv. Mercia) was grown at two different atmospheric CO2 concentrations (350 and 700 μmol mol−1), two temperatures [ambient temperature (i.e. tracking the open air) and ambient +4°C] and two rates of nitrogen supply (equivalent to 489 kg ha−1 and 87 kg ha−1). Leaves grown at 700 μmol mol−1 CO2 had slightly greater photosynthetic capacity (10% mean increase over the experiment) than those grown at ambient CO2 concentration, but there were no differences in carboxylation efficiency or apparent quantum yield. The amounts of chlorophyll, soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit leaf area did not change with long-term exposure to elevated CO2 concentration. Thus winter wheat, grown under simulated field conditions, for which total biomass was large compared to normal field production, did not experience loss of components of the photosynthetic system or loss of photosynthetic competence with elevated CO2 concentration. However, nitrogen supply and temperature had large effects on photosynthetic characteristics but did not interact with elevated CO2 concentration. Nitrogen deficiency resulted in decreases in the contents of protein, including Rubisco, and chlorophyll, and decreased photosynthetic capacity and carboxylation efficiency. An increase in temperature also reduced these components and shortened the effective life of the leaves, reducing the duration of high photosynthetic capacity.  相似文献   

6.
For most of the past 250 000 years, atmospheric CO2 has been 30–50% lower than the current level of 360 μmol CO2 mol–1 air. Although the effects of CO2 on plant performance are well recognized, the effects of low CO2 in combination with abiotic stress remain poorly understood. In this study, a growth chamber experiment using a two-by-two factorial design of CO2 (380 μmol mol–1, 200 μmol mol–1) and temperature (25/20 °C day/night, 36/29 °C) was conducted to evaluate the interactive effects of CO2 and temperature variation on growth, tissue chemistry and leaf gas exchange of Phaseolus vulgaris. Relative to plants grown at 380 μmol mol–1 and 25/20 °C, whole plant biomass was 36% less at 380 μmol mol–1× 36/29 °C, and 37% less at 200 μmol mol–1× 25/20 °C. Most significantly, growth at 200 μmol mol–1× 36/29 °C resulted in 77% less biomass relative to plants grown at 380 μmol mol–1× 25/20 °C. The net CO2 assimilation rate of leaves grown in 200 μmol mol–1× 25/20 °C was 40% lower than in leaves from 380 μmol mol–1× 25/20 °C, but similar to leaves in 200 μmol mol–1× 36/29 °C. The leaves produced in low CO2 and high temperature respired at a rate that was double that of leaves from the 380μmol mol–1× 25/20 °C treatment. Despite this, there was little evidence that leaves at low CO2 and high temperature were carbohydrate deficient, because soluble sugars, starch and total non-structural carbohydrates of leaves from the 200μmol mol–1× 36/29 °C treatment were not significantly different in leaves from the 380μmol mol–1× 25/20 °C treatment. Similarly, there was no significant difference in percentage root carbon, leaf chlorophyll and leaf/root nitrogen between the low CO2× high temperature treatment and ambient CO2 controls. Decreased plant growth was correlated with neither leaf gas exchange nor tissue chemistry. Rather, leaf and root growth were the most affected responses, declining in equivalent proportions as total biomass production. Because of this close association, the mechanisms controlling leaf and root growth appear to have the greatest control over the response to heat stress and CO2 reduction in P. vulgaris.  相似文献   

7.
Pedunculate oak (Quercus robur L.) was germinated and grown at ambient CO2 concentration and 650 μmol mol?1 CO2 in the presence and absence of the ectomycorrhizal fungus Laccaria laccata for a total of 22 weeks under nonlimiting nutrient conditions. Sulphate uptake, xylem loading and exudation were analysed in excised roots. Despite a relatively high affinity for sulphate (KM= 1.6 mmol m?3), the rates of sulphate uptake by excised lateral roots of mycorrhizal oak trees were low as compared to herbaceous plants. Rates of sulphate uptake were similar in mycorrhizal and non-mycorrhizal roots and were not affected by growth of the trees at elevated CO2. However, the total uptake of sulphate per plant was enhanced by elevated CO2 and further enhanced by elevated CO2 and mycorrhization. Sulphate uptake seemed to be closely correlated with biomass accumulation under the conditions applied. The percentage of the sulphate taken up by mycorrhizal oak roots that was loaded into the xylem was an order of magnitude lower than previously observed for herbaceous plants. The rate of xylem loading was enhanced by mycorrhization and, in roots of mycorrhizal trees only, by growth at elevated CO2. On a whole-plant basis this increase in xylem loading could only partially be explained by the increased growth of the trees. Elevated CO2 and mycorrhization appeared to increase greatly the sulphate supply of the shoot at the level of xylem loading. For all treatments, calculated rates of sulphate exudation were significantly lower than the corresponding rates of xylem loading of sulphate. Radiolabelled sulphate loaded into the xylem therefore seems to be readily diluted by unlabelled sulphate during xylem transport. Allocation of reduced sulphur from oak leaves was studied by flap-feeding radiolabelled GSH to mature oak leaves. The rate of export of radioactivity from the fed leaves was 4–5 times higher in mycorrhizal oak trees grown at elevated CO2 than in those grown at ambient CO2. Export of radiolabel proceeded almost exclusively in a basipetal direction to the roots. From these experiments it can be concluded that, in mycorrhizal oak trees grown at elevated CO2, the transport of sulphate to the shoot is increased at the level of xylem loading to enable increased sulphate reduction in the leaves. Increased sulphate reduction seems to be required for the enhanced allocation of reduced sulphur to the roots which is observed in trees grown at elevated CO2. These changes in sulphate and reduced sulphur allocation may be a prerequisite for the positive effect of elevated CO2 on growth of oak trees previously observed.  相似文献   

8.
Using open top chambers, the effects of elevated O3 (80 nmol mol−1) and elevated CO2 (700 μmol mol−1), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O3 increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO2, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O3 stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO2 exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O3 treatment. It indicates that the protective effect of elevated CO2 against O3 stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O3 significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO2 suppressed the O3-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO2 increased total phenolics content in the leaves both under ambient O3 and elevated O3 exposure, which might contribute to the protection against O3-induced oxidative stress as well.  相似文献   

9.
Atmospheric CO2 is a major contributor to the greenhouse effect and is one of the main inducers of climate change. Previous studies with nodulated alfalfa plants have shown that elevated CO2 increased the growth of plants grown under well‐watered or limited water supply conditions. The beneficial effects of atmospheric CO2 enrichment included higher photosynthetic rates, growth and water‐use efficiency and an increase in the root/shoot ratio. However, at the moment, we do not have information on the possible implications of the beneficial effect of elevated CO2 as it may relate to a higher capacity of the violaxanthin–antheraxanthin–zeaxanthin (VAZ) cycle, the dissipation of excess radiation as heat and the effect on photooxidation, and to an improved leaf antioxidant system (Halliwell–Asada cycle). The aim of the present study was to determine the effects of the interaction between CO2 (ambient, around 350 vs 700 μmol mol−1), temperature (ambient vs ambient + 4°C) and water availability (well irrigated vs partially irrigated) on the leaf antioxidant status of nodulated alfalfa during regrowth. Parameters measured in this study included relative growth rate (RGR), H2O2 content, oxidative damage [measured as thiobarbituric acid‐reacting substances (TBARS)], leaf pigment composition (chlorophylls and xanthophylls), ascorbate (ASA) and glutathione pool levels and antioxidant enzymes. Our results revealed that during alfalfa regrowth, the effects of elevated CO2, limited water supply, temperature and their interactions on growth were not related to significant or general changes in leaf antioxidant capacity, H2O2 accumulation or oxidative stress (TBARS concentrations). The beneficial effects of CO2 enrichment in well‐watered and limited water‐subjected plants were not associated with an increase in the capacity of alfalfa leaves to dissipate excess radiation as heat through the VAZ cycle or with an increase in the antioxidant capacity, measured in terms of Halliwell–Asada cycle enzymes and antioxidant compounds. Furthermore, elevated CO2 did not affect RGRs during the last 15 days of regrowth and reduced the activity of several antioxidant enzymes (catalase, superoxide dismutase and glutathione reductase and ASA peroxidase in limited water‐subjected plants), suggesting a lower basal rate of oxygen activation and H2O2 formation, leading to a relaxation of the antioxidant system.  相似文献   

10.
Pedunculate oak (Quercus robur L.) was germinated and grown under nutrient non-limiting conditions for a total of 10–15 weeks at ambient CO2 concentration and 1100 μmol mol–1 CO2 either in the presence or the absence of the mycorrhizal fungus Laccaria laccata. Half of the oak trees of these treatments were exposed to drought during final growth by suspending the water supply for 21 d. Mycorrhization and elevated atmospheric CO2 each enhanced total plant biomass per tree. Whereas additional biomass accumulation of trees grown under elevated CO2 was mainly attributed to increased growth of lateral roots, mycorrhization promoted shoot growth. Water deficiency reduced biomass accumulation without affecting relative water content, but this effect was more pronounced in mycorrhizal as compared to non-mycorrhizal trees. Elevated CO2 partially prevented the development of drought stress, as indicated by leaf water potential, but did not counteract the negative effects of water deficiency on growth during the time studied. Enhanced biomass accumulation requires adaption in protein synthesis and, as a consequence, enhanced allocation of reduced sulphur produced in the leaves to growing tissues. Therefore, allocation of reduced sulphur from oak leaves was studied by flap-feeding radiolabelled GSH, the main long-distance transport form of reduced sulphur, to mature oak leaves. Export of radiolabel proceeded almost exclusively in basipetal direction to the roots. The rate of export of radioactivity out of the fed leaves was significantly enhanced under elevated CO2, irrespective of mycorrhization. A higher proportion of the exported GSH was transported to the roots than to basipetal stem sections under elevated CO2 as compared to ambient CO2. Mycorrhization did not affect 35S export out of the fed leaves, but the distribution of radiolabel between stem and roots was altered in preference of the stem. Trees exposed to drought did not show appreciable export of the 35S radioactivity fed to the leaves when grown under ambient CO2. Apparently, drought inhibited basipetal transport of reduced sulphur at the level of phloem loading and/or phloem transport. Elevated CO2 seemed to counteract this effect of drought stress to some extent, since higher leaf water potentials and improved 35S export out of the fed leaves was observed in oak trees exposed to drought and elevated CO2 as compared to trees exposed to drought and ambient CO2.  相似文献   

11.
Potato plants (Solanum tuberosum L. cv. Bintje) were grown to maturity in open-top chambers under three carbon dioxide (CO2; ambient and 24 h d−1 seasonal mean concentrations of 550 and 680 μmol mol−1) and two ozone levels (O3; ambient and an 8 h d−1 seasonal mean of 50 nmol mol−1). Chlorophyll content, photosynthetic characteristics, and stomatal responses were determined to test the hypothesis that elevated atmospheric CO2 may alleviate the damaging influence of O3 by reducing uptake by the leaves. Elevated O3 had no detectable effect on photosynthetic characteristics, leaf conductance, or chlorophyll content, but did reduce SPAD values for leaf 15, the youngest leaf examined. Elevated CO2 also reduced SPAD values for leaf 15, but not for older leaves; destructive analysis confirmed that chlorophyll content was decreased. Leaf conductance was generally reduced by elevated CO2, and declined with time in the youngest leaves examined, as did assimilation rate (A). A generally increased under elevated CO2, particularly in the older leaves during the latter stages of the season, thereby increasing instantaneous transpiration efficiency. Exposure to elevated CO2 and/or O3 had no detectable effect on dark-adapted fluorescence, although the values decreased with time. Analysis of the relationships between assimilation rate and intercellular CO2 concentration and photosynthetically active photon flux density showed there was initially little treatment effect on CO2-saturated assimilation rates for leaf 15. However, the values for plants grown under 550 μmol mol−1 CO2 were subsequently greater than in the ambient and 680 μmol mol−1 treatments, although the beneficial influence of the former treatment declined sharply towards the end of the season. Light-saturated assimilation was consistently greater under elevated CO2, but decreased with time in all treatments. The values decreased sharply when leaves grown under elevated CO2 were measured under ambient CO2, but increased when leaves grown under ambient CO2 were examined under elevated CO2. The results obtained indicate that, although elevated CO2 initially increased assimilation and growth, these beneficial effects were not necessarily sustained to maturity as a result of photosynthetic acclimation and the induction of earlier senescence.  相似文献   

12.
Increased atmospheric carbon dioxide supply is predicted to alter plant growth and biomass allocation patterns. It is not clear whether changes in biomass allocation reflect optimal partitioning or whether they are a direct effect of increased growth rates. Plasticity in growth and biomass allocation patterns was investigated at two concentrations of CO2 ([CO2]) and at limiting and nonlimiting nutrient levels for four fast‐ growing old‐field annual species. Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, and Polygonum pensylvanicum were grown from seed in controlled growth chamber conditions at current (350 μmol mol?1, ambient) and future‐ predicted (700 μmol mol?1, elevated) CO2 levels. Frequent harvests were used to determine growth and biomass allocation responses of these plants throughout vegetative development. Under nonlimiting nutrient conditions, whole plant growth was increased greatly under elevated [CO2] for three C3 species and moderately increased for a C4 species (Amaranthus). No significant increases in whole plant growth were observed under limiting nutrient conditions. Plants grown in elevated [CO2] had lower or unchanged root:shoot ratios, contrary to what would be expected by optimal partitioning theory. These differences disappeared when allometric plots of the same data were analysed, indicating that CO2‐induced differences in root:shoot allocation were a consequence of accelerated growth and development rates. Allocation to leaf area was unaffected by atmospheric [CO2] for these species. The general lack of biomass allocation responses to [CO2] availability is in stark contrast with known responses of these species to light and nutrient gradients. We conclude that biomass allocation responses to elevated atmospheric [CO2] are not consistent with optimal partitioning predictions.  相似文献   

13.
吴永波  叶波 《生态学报》2016,36(2):403-410
近年来,全球气温不断升高,亚热带部分地区夏季高温和临时性干旱现象日益显著,高温与干旱严重威胁着植物的生存与生长。采用盆栽和人工气候室方式模拟不同的温度和土壤水分梯度,研究了高温与干旱复合胁迫对构树幼苗超氧化物歧化酶(SOD)、过氧化物酶(POD)与过氧化氢酶(CAT)活性、活性氧代谢和丙二醛(MDA)含量的影响。结果表明:(1)高温或干旱单一胁迫下,构树幼苗SOD、POD、CAT活性增加,复合胁迫下,SOD和POD酶活性高于单一胁迫,且随着复合胁迫时间延长而升高。SOD活性受温度和土壤水分双因素影响极其显著,复合胁迫对SOD活性有一定程度的叠加效应;(2)复合胁迫下,活性氧代谢物与MDA含量均显著高于单一胁迫,表明复合胁迫加剧对植物的伤害。通过改变抗氧化酶活性以减轻膜脂过氧化的伤害作用是有限的。  相似文献   

14.
Control coefficients were used to describe the degree to which ribulose bisphosphate carboxylase/oxygenase (Rubisco) limits the steady-state rate of CO2 assimilation in sunflower leaves from plants grown at high (800 μmol mol−1) and low (350 μmol mol−1) CO2. The magnitude of a control coefficient is approximately the percentage change in the flux that would result from a 1% rise in enzyme active site concentration. In plants grown at low CO2, leaves of different ages varied considerably in their photosynthetic capacities. In a saturating light flux and an ambient CO2 concentration of 350 μmol mol−1, the Rubisco control coefficient was about 0.7 in all leaves, indicating that Rubisco activity largely limited the assimilation flux. The Rubisco control coefficient for leaves grown at 350 μmol mol−1 CO2 dropped to about zero when the ambient CO2 concentration was raised to 800 μmol mol−1. In relatively young, fully expanded leaves of plants grown at high CO2, the Rubisco control coefficient was also about 0.7 at a saturating light flux and at the CO2 concentration at which the plants were grown (800 μmol mol−1). This apparently resulted from a decrease in the concentration of Rubisco active sites. In older leaves, however, the control coefficient was about 0.2. Because, on the whole, Rubisco activity still largely limits the assimilation flux in plants grown at high CO2, the kinetics of this enzyme can still be used to model photosynthesis under these conditions. The relatively high Rubisco control coefficient under enhanced CO2 indicates that the young sunflower leaves have the capacity to acclimate their photosynthetic biochemistry in a way consistent with an optimal use of protein resources.  相似文献   

15.
Nitrogen‐fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one‐year‐old‐seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 µ mol mol ? 1) and elevated [CO2] (700 µ mol mol ? 1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen‐fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N‐labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June–August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994–1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C‐biomass allocation away from the leaves towards the shoots (all above‐ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2‐fixing tree.  相似文献   

16.
This study examined the effects of season-long exposure of Chinese pine (Pinus tabulaeformis) to elevated carbon dioxide (CO2) and/or ozone (O3) on indole-3-acetic acid (IAA) content, activities of IAA oxidase (IAAO) and peroxidase (POD) in needles. Trees grown in open-top chambers (OTC) were exposed to control (ambient O3, 55 nmol mol−1 + ambient CO2, 350 μmol mol−1, CK), elevated CO2 (ambient O3 + high CO2, 700 μmol mol−1, EC) and elevated O3 (high O3, 80 ± 8 nmol mol−1 + ambient CO2, EO) OTCs from 1 June to 30 September. Plants grown in elevated CO2 OTC had a growth increase of axial shoot and needle length, compared to control, by 20% and 10% respectively, while the growth in elevated O3 OTC was 43% and 7% less respectively, than control. An increase in IAA content and POD activity and decrease in IAAO activity were observed in trees exposed to elevated CO2 concentration compared with control. Elevated O3 decreased IAA content and had no significant effect on IAAO activity, but significantly increased POD activity. When trees pre-exposed to elevated CO2 were transferred to elevated O3 (EC–EO) or trees pre-exposed to elevated O3 were transferred to elevated CO2 (EO–EC), IAA content was lower while IAAO activity was higher than that transferred to CK (EC–CK or EO–CK), the change in IAA content was also related to IAAO activity. The results indicated that IAAO and POD activities in Chinese pine needles may be affected by the changes in the atmospheric environment, resulting in the change of IAA metabolism which in turn may cause changes in Chinese pine’s growth. An erratum to this article can be found at  相似文献   

17.
Cakmak  I.  Marschner  H. 《Plant and Soil》1993,155(1):127-130
The effect of varied zinc (Zn) supply on the activities of superoxide dismutase (SOD), ascorbate (AsA) peroxidase, glutathione (GSSG) reductase, catalase and guaiacol peroxidase was studied in leaves of bean (Phaseolus vulgaris) plants grown for 15 days in nutrient solution. Zinc deficiency severely decreased plant growth and the leaf concentrations of soluble protein and chlorophyll. Resupply of Zn to deficient plants for up to 72h restored protein concentrations more rapidly than chlorophyll and plant growth. With the exception of guaiacol peroxidase, the activities of all enzymes were significantly decreased by Zn deficiency, in particular GSSG reductase and SOD. Within 72h of resupplying Zn to deficient plants, the enzyme activities reached the level of the Zn sufficient plants. The results indicate severe impairment in the ability of Zn-deficient leaves to enzymically scavenge O2 - and H2O2. Consequences and reasons of this impairment are discussed in terms of photooxidation of chloroplast pigments and inhibition of the biosynthesis of the related scavenger enzyme proteins.  相似文献   

18.
Our study aimed at investigating the influence of elevated atmospheric CO2 concentration on the salinity tolerance of the cash crop halophyte Aster tripolium L., thereby focussing on protein expression and enzyme activities. The plants were grown in hydroponics using a nutrient solution with or without addition of NaCl (75% seawater salinity), under ambient (380 ppm) and elevated (520 ppm) CO2. Under ambient CO2 concentration enhanced expressions and activities of the antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and glutathione-S-transferase in the salt-treatments were recorded as a reaction to oxidative stress. Elevated CO2 led to significantly higher enzyme expressions and activities in the salt-treatments, so that reactive oxygen species could be detoxified more effectively. Furthermore, the expression of a protective heat shock protein (class 20) increased under salinity and was even further enhanced under elevated CO2 concentration. Additional energy had to be provided for the mechanisms mentioned above, which was indicated by the increased expression of a β ATPase subunit and higher v-, p- and f-ATPase activities under salinity. The higher ATPase expression and activities also enable a more efficient ion transport and compartmentation for the maintenance of ion homeostasis. We conclude that elevated CO2 concentration is able to improve the survival of A. tripolium under salinity because more energy is provided for the synthesis and enhanced activity of enzymes and proteins which enable a more efficient ROS detoxification and ion compartmentation/transport.  相似文献   

19.
Elevated CO 2 may reduce the tolerance of Nilaparvata lugen (N. lugens) to adverse environmental factors through the biological and physiological degeneration of N. lugens. In an artificial climate box, under 375 and 750 μL L 1 CO 2 levels, the rice stems nutrient content, the nutrient content and enzyme activities of N. lugens nymph fed on rice seedlings exposed to ambient and elevated CO 2 were studied. The results showed that rice stems had significantly higher protein and total amino acid levels under ambient than elevated CO 2 levels. Nymphs had significantly higher protein levels in the ambient CO 2 treatment, while their glucose levels were significantly lower under ambient CO 2 conditions. Significantly higher trypsin activity was observed in nymphs grown in elevated CO 2 . Significantly lower activities of the protective enzymes total superoxide dismutase and catalase were observed in the nymphs under ambient CO 2 . Meanwhile, the activity of the detoxification enzyme glutathione S-transferase was significantly higher in the ambient CO 2 treatment. Measuring how energy and resources were allocated to enzymes in N. lugens nymphs under elevated CO 2 conditions can provide a more meaningful evaluation of their metabolic tolerances to adverse climatic conditions.  相似文献   

20.
The effects of elevated CO2 concentration on the growth and development of the funnel‐web weaving spider Agelena labyrinthica (Clerck) (Araneae: Agelenidae) were studied in climate chambers with low (370 μl l?1) or high (750 μl l?1) CO2 concentration. Seventh‐instar A. labyrinthica cultured under each of these CO2 concentrations were randomly selected to determine nutrient composition (total protein, total amino acid, and free fatty acid) and digestive or detoxification enzymes activity (peroxidase, amylase, and superoxide dismutase) using test kits. When reared under high CO2 concentration, total development of A. labyrinthica was significantly faster. Carapace length and width and body weight did not differ between CO2 concentrations, nor the levels of protein and total amino acids in seventh‐instar A. labyrinthica. However, free fatty acid levels were significantly lower under high CO2 concentration. Specific activities of peroxidase and superoxide dismutase in seventh‐instar A. labyrinthica did not differ between CO2 concentrations. The specific activity of amylase under high CO2 concentration was higher than that of the low CO2 group. The effects of elevated CO2 on A. labyrinthica varied from those on the wandering spider Pardosa astrigera L Koch, as found in an earlier study. Apparently, elevated CO2 has a species‐specific impact on spiders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号