首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Opioid receptors are the principal targets for opioids, which have been used as analgesics for centuries. Opioid receptors belong to the rhodopsin family of G-protein coupled receptors (GPCRs). In the absence of crystal structures of opioid receptors, 3D homology models have been reported with bovine rhodopsin as a template, though the sequence homology is low. Recently, it has been reported that use of multiple templates results in a better model for a target having low sequence identity with a single template. With the objective of carrying out a comparative study on the structural quality of the 3D models based on single and multiple templates, the homology models for opioid receptors (mu, delta and kappa) were generated using bovine rhodopsin as single template and the recently deposited crystal structures of squid rhodopsin, turkey β-1 and human β-2 adrenoreceptors along with bovine rhodopsin as multiple templates. In this paper we report the results of comparison between the refined 3D models based on multiple sequence alignment (MSA) and models built with bovine rhodopsin as template, using validation programs PROCHECK, PROSA, Verify 3D, Molprobity and docking studies. The results indicate that homology models of mu and kappa with multiple templates are better than those built with only bovine rhodopsin as template, whereas, in many aspects, the homology model of delta opioid receptor with single template is better with respect to the model based on multiple templates. Three nonselective ligands were docked to both the models of mu, delta and kappa opioid receptors using GOLD 3.1. The results of docking complied well with the pharamacophore, reported for nonspecific opioid ligands. The comparison of docking results for models with multiple templates and those with single template have been discussed in detail. Three selective ligands for each receptor were also docked. As the crystallographic structures are not yet known, this comparison will help in choosing better homology models of opioid receptors for studying ligand receptor interactions to design new potent opioid antagonists.  相似文献   

2.
G protein-coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER) method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha) root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness and robustness of the in silico models for GPCR functional analysis. All predicted GPCR models are freely available for noncommercial users on our Web site (http://www.bioinformatics.buffalo.edu/GPCR).  相似文献   

3.
So far, 13 groups of mammalian Toll-like receptors (TLRs) have been identified. Most TLRs have been shown to recognize pathogen-associated molecular patterns from a wide range of invading agents and initiate both innate and adaptive immune responses. The TLR ectodomains are composed of varying numbers and types of leucine-rich repeats (LRRs). As the crystal structures are currently missing for most TLR ligand-binding ectodomains, homology modeling enables first predictions of their three-dimensional structures on the basis of the determined crystal structures of TLR ectodomains. However, the quality of the predicted models that are generated from full-length templates can be limited due to low sequence identity between the target and templates. To obtain better templates for modeling, we have developed an LRR template assembly approach. Individual LRR templates that are locally optimal for the target sequence are assembled into multiple templates. This method was validated through the comparison of a predicted model with the crystal structure of mouse TLR3. With this method, we also constructed ectodomain models of human TLR5, TLR6, TLR7, TLR8, TLR9, and TLR10 and mouse TLR11, TLR12, and TLR13 that can be used as first passes for a computational simulation of ligand docking or to design mutation experiments. This template assembly approach can be extended to other repetitive proteins.  相似文献   

4.

Background

Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures.

Methodology

We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model.

Conclusions

The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will help to produce more reliable three-dimensional models.  相似文献   

5.
Building reliable structural models of G protein‐coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template‐based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1–3 Å Cα RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter‐residue contacts between the template and target, and exploits an all‐atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor‐ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human β2‐adrenergic receptor (β2AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X‐ray crystal structure of the β2AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix‐helix packing interactions that distinguish rhodopsin from β2AR. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Zhu M  Li M 《Molecular bioSystems》2012,8(6):1686-1693
G-protein coupled receptors (GPCRs) are recognized to constitute the largest family of membrane proteins. Due to the disproportion in the quantity of crystal structures and their amino acid sequences, homology modeling contributes a reasonable and feasible approach to GPCR theoretical coordinates. With the brand new crystal structures resolved recently, herein we deliberated how to designate them as templates to carry out homology modeling in four aspects: (1) various sequence alignment methods; (2) protein weight matrix; (3) different sets of multiple templates; (4) active and inactive state of templates. The accuracy of models was evaluated by comparing the similarity of stereo conformation and molecular docking results between models and the experimental structure of Meleagris gallopavo β(1)-adrenergic receptor (Mg_Adrb1) that we desired to develop as an example. Our results proposed that: (1) Cobalt and MAFFT, two algorithms of sequence alignment, were suitable for single- and multiple-template modeling, respectively; (2) Blosum30 is applicable to align sequences in the case of low sequence identity; (3) multiple-template modeling is not always better than single-template one; (4) the state of template is an influential factor in simulating the GPCR structures as well.  相似文献   

7.
The community-wide GPCR Dock assessment is conducted to evaluate the status of molecular modeling and ligand docking for human G protein-coupled receptors. The present round of the assessment was based on the recent structures of dopamine D3 and CXCR4 chemokine receptors bound to small molecule antagonists and CXCR4 with?a synthetic cyclopeptide. Thirty-five groups submitted their receptor-ligand complex structure predictions prior to the release of the crystallographic coordinates. With closely related homology modeling templates, as for dopamine D3 receptor, and with incorporation of biochemical and QSAR data, modern computational techniques predicted complex details with accuracy approaching experimental. In contrast,?CXCR4 complexes that had less-characterized interactions and only distant homology to the known GPCR structures still remained very challenging. The assessment results provide guidance for modeling and crystallographic communities in method development and target selection for further expansion of the structural coverage of the GPCR universe.  相似文献   

8.
Toll‐like receptors (TLRs) play a key role in the innate immune system. The TLR7, 8, and 9 compose a family of intracellularly localized TLRs that signal in response to pathogen‐derived nucleic acids. So far, there are no crystallographic structures for TLR7, 8, and 9. For this reason, their ligand‐binding mechanisms are poorly understood. To enable first predictions of the receptor–ligand interaction sites, we developed three‐dimensional structures for the leucine‐rich repeat ectodomains of human TLR7, 8, and 9 based on homology modeling. To achieve a high sequence similarity between targets and templates, structural segments from all known TLR ectodomain structures (human TLR1/2/3/4 and mouse TLR3/4) were used as candidate templates for the modeling. The resulting models support previously reported essential ligand‐binding residues. They also provide a basis to identify three potential receptor dimerization mechanisms. Additionally, potential ligand‐binding residues are identified using combined procedures. We suggest further investigations of these residues through mutation experiments. Our modeling approach can be extended to other members of the TLR family or other repetitive proteins.  相似文献   

9.
We present a critical assessment of the performance of our homology model refinement method for G protein‐coupled receptors (GPCRs), called LITICon that led to top ranking structures in a recent structure prediction assessment GPCRDOCK2010. GPCRs form the largest class of drug targets for which only a few crystal structures are currently available. Therefore, accurate homology models are essential for drug design in these receptors. We submitted five models each for human chemokine CXCR4 (bound to small molecule IT1t and peptide CVX15) and dopamine D3DR (bound to small molecule eticlopride) before the crystal structures were published. Our models in both CXCR4/IT1t and D3/eticlopride assessments were ranked first and second, respectively, by ligand RMSD to the crystal structures. For both receptors, we developed two types of protein models: homology models based on known GPCR crystal structures, and ab initio models based on the prediction method MembStruk. The homology‐based models compared better to the crystal structures than the ab initio models. However, a robust refinement procedure for obtaining high accuracy structures is needed. We demonstrate that optimization of the helical tilt, rotation, and translation is vital for GPCR homology model refinement. As a proof of concept, our in‐house refinement program LITiCon captured the distinct orientation of TM2 in CXCR4, which differs from that of adrenoreceptors. These findings would be critical for refining GPCR homology models in future. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Human G-protein coupled receptors (hGPCRs) comprise the most prominent family of validated drug targets. More than 50% of approved drugs reveal their therapeutic effects by targeting this family. Accurate models would greatly facilitate the process of drug discovery and development. However, 3-D structure prediction of GPCRs remains a challenge due to limited availability of resolved structure. The X-ray structures have been solved for only four such proteins. The identity between hGPCRs and the potential templates is mostly less than 30%, well below the level at which sequence alignment can be done regularly. In this study, we analyze a large database of human G-protein coupled receptors that are members of family A in order to optimize usage of the available crystal structures for molecular modeling of hGPCRs. On the basis of our findings in this study, we propose to regard specific parts from the trans-membrane domains of the reference receptor helices as appropriate template for constructing models of other GPCRs, while other residues require other techniques for their remodeling and refinement. The proposed hypothesis in the current study has been tested by modeling human β2-adrenergic receptor based on crystal structures of bovine rhodopsin (1F88) and human A2A adenosine receptor (3EML). The results have shown some improvement in the quality of the predicted models compared to Modeller software.  相似文献   

11.
Serotonin(1A) receptors are important neurotransmitter receptors and belong to the superfamily of G-protein coupled receptors (GPCRs). Although it is an important drug target, the crystal structure of the serotonin(1A) receptor has not been solved yet. Earlier homology models of the serotonin(1A) receptor were generated using rhodopsin as a template. We have used two recent crystal structures of the human β(2)-adrenergic receptor, one of which shows specific cholesterol binding site(s), as templates to model the human serotonin(1A) receptor. Since the sequence similarity between the serotonin(1A) receptor and β(2)-adrenergic receptor is considerably higher than the similarity between the serotonin(1A) receptor and rhodopsin, our model is more reliable. Based on these templates, we generated models of the serotonin(1A) receptor in the absence and presence of cholesterol. The receptor model appears more compact in the presence of cholesterol. We validated the stability of 'compactness' using coarse-grain MD simulation. Importantly, all ligands exhibit higher binding energies when docked to the receptor in the presence of cholesterol, thereby implying that membrane cholesterol facilitates ligand binding to the serotonin(1A) receptor. To the best of our knowledge, this is one of the first reports in which lipid-specific receptor conformations have been modeled by homology modeling.  相似文献   

12.
Protein comparative modeling has useful applications in large-scale structural initiatives and in rational design of drug targets in medicinal chemistry. The reliability of a homology model is dependent on the sequence identity between the query and the structural homologue used as a template for modeling. Here, we present a method for the utilization and conservation of important structural features of template structures by providing additional spatial restraints in comparative modeling programs like MODELLER. We show that root mean square deviation at C(alpha) positions between the model and the corresponding experimental structure and the quality of the models can be significantly improved for distantly related systems by utilizing additional spatial restraints of the template structures. We demonstrate the influence of such approaches to homology modeling during distant relationships in understanding functional properties of protein such as ligand binding using cytochrome P450 as an example.  相似文献   

13.
The aim of the current study is to investigate whether homology models of G-Protein-Coupled Receptors (GPCRs) that are based on bovine rhodopsin are reliable enough to be used for virtual screening of chemical databases. Starting from the recently described 2.8 A-resolution X-ray structure of bovine rhodopsin, homology models of an "antagonist-bound" form of three human GPCRs (dopamine D3 receptor, muscarinic M1 receptor, vasopressin V1a receptor) were constructed. The homology models were used to screen three-dimensional databases using three different docking programs (Dock, FlexX, Gold) in combination with seven scoring functions (ChemScore, Dock, FlexX, Fresno, Gold, Pmf, Score). Rhodopsin-based homology models turned out to be suitable, indeed, for virtual screening since known antagonists seeded in the test databases could be distinguished from randomly chosen molecules. However, such models are not accurate enough for retrieving known agonists. To generate receptor models better suited for agonist screening, we developed a new knowledge- and pharmacophore-based modeling procedure that might partly simulate the conformational changes occurring in the active site during receptor activation. Receptor coordinates generated by this new procedure are now suitable for agonist screening. We thus propose two alternative strategies for the virtual screening of GPCR ligands, relying on a different set of receptor coordinates (antagonist-bound and agonist-bound states).  相似文献   

14.
G-protein coupled receptors (GPCRs) are thought to be proteins with 7-membered transmembrane helical bundles (7TM proteins). Recently, the X-ray structures have been solved for two such proteins, namely for bacteriorhodopsin (BR) and rhodopsin (Rh), the latter being a GPCR. Despite similarities, the structures are different enough to suggest that 3D models for different GPCRs cannot be obtained directly employing 3D structures of BR or Rh as a unique template. The approach to computer modeling of 7TM proteins developed in this work was capable of reproducing the experimental X-ray structure of BR with great accuracy. A combination of helical packing and low-energy conformers for loops most close to the X-ray structure possesses the r.m.s.d. value of 3.13 A. Such a level of accuracy for the 3D-structure prediction for a 216-residue protein has not been achieved, so far, by any available ab initio procedure of protein folding. The approach may produce also other energetically consistent combinations of helical bundles and loop conformers, creating a variety of possible templates for 3D structures of 7TM proteins, including GPCRs. These templates may provide experimentalists with various plausible options for 3D structure of a given GPCR; in our view, only experiments will determine the final choice of the most reasonable 3D template.  相似文献   

15.
G Protein‐Coupled Receptors (GPCRs) are integral membrane proteins that play important role in regulating key physiological functions, and are targets of about 50% of all recently launched drugs. High‐resolution experimental structures are available only for very few GPCRs. As a result, structure‐based drug design efforts for GPCRs continue to rely on in silico modeling, which is considered to be an extremely difficult task especially for these receptors. Here, we describe Gmodel, a novel approach for building 3D atomic models of GPCRs using a normal mode‐based refinement of homology models. Gmodel uses a small set of relevant low‐frequency vibrational modes derived from Random Elastic Network model to efficiently sample the large‐scale receptor conformation changes and generate an ensemble of alternative models. These are used to assemble receptor–ligand complexes by docking a known active into each of the alternative models. Each of these is next filtered using restraints derived from known mutation and binding affinity data and is refined in the presence of the active ligand. In this study, Gmodel was applied to generate models of the antagonist form of histamine 3 (H3) receptor. The validity of this novel modeling approach is demonstrated by performing virtual screening (using the refined models) that consistently produces highly enriched hit lists. The models are further validated by analyzing the available SAR related to classical H3 antagonists, and are found to be in good agreement with the available experimental data, thus providing novel insights into the receptor–ligand interactions. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
We present a comparative account on 3D-structures of human type-1 receptor (AT1) for angiotensin II (AngII), modeled using three different methodologies. AngII activates a wide spectrum of signaling responses via the AT1 receptor that mediates physiological control of blood pressure and diverse pathological actions in cardiovascular, renal, and other cell types. Availability of 3D-model of AT1 receptor would significantly enhance the development of new drugs for cardiovascular diseases. However, templates of AT1 receptor with low sequence similarity increase the complexity in straightforward homology modeling, and hence there is a need to evaluate different modeling methodologies in order to use the models for sensitive applications such as rational drug design. Three models were generated for AT1 receptor by, (1) homology modeling with bovine rhodopsin as template, (2) homology modeling with multiple templates and (3) threading using I-TASSER web server. Molecular dynamics (MD) simulation (15 ns) of models in explicit membrane-water system, Ramachandran plot analysis and molecular docking with antagonists led to the conclusion that multiple template-based homology modeling outweighs other methodologies for AT1 modeling.  相似文献   

17.
G protein-coupled receptors (GPCRs) are attractive targets for pharmaceutical research. With the recent determination of several GPCR X-ray structures, the applicability of structure-based computational methods for ligand identification, such as docking, has increased. Yet, as only about 1% of GPCRs have a known structure, receptor homology modeling remains necessary. In order to investigate the usability of homology models and the inherent selectivity of a particular model in relation to close homologs, we constructed multiple homology models for the A1 adenosine receptor (A1AR) and docked ∼2.2 M lead-like compounds. High-ranking molecules were tested on the A1AR as well as the close homologs A2AAR and A3AR. While the screen yielded numerous potent and novel ligands (hit rate 21% and highest affinity of 400 nM), it delivered few selective compounds. Moreover, most compounds appeared in the top ranks of only one model. These findings have implications for future screens.  相似文献   

18.
M. F. Thorpe  S. Banu Ozkan 《Proteins》2015,83(12):2279-2292
The most successful protein structure prediction methods to date have been template‐based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug‐design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr‐REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native‐like structures from a template and to provide a set of persistent contacts to be employed during re‐folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. Proteins 2015; 83:2279–2292. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
G-protein coupled receptors (GPCRs) are targets of nearly one third of the drugs at the current pharmaceutical market. Despite their importance in many cellular processes the crystal structures are available for less than 20 unique GPCRs of the Rhodopsin-like class. Fortunately, even though involved in different signaling cascades, this large group of membrane proteins has preserved a uniform structure comprising seven transmembrane helices that allows quite reliable comparative modeling. Nevertheless, low sequence similarity between the GPCR family members is still a serious obstacle not only in template selection but also in providing theoretical models of acceptable quality. An additional level of difficulty is the prediction of kinks and bulges in transmembrane helices. Usage of multiple templates and generation of alignments based on sequence profiles may increase the rate of success in difficult cases of comparative modeling in which the sequence similarity between GPCRs is exceptionally low. Here, we present GPCRM, a novel method for fast and accurate generation of GPCR models using averaging of multiple template structures and profile-profile comparison. In particular, GPCRM is the first GPCR structure predictor incorporating two distinct loop modeling techniques: Modeller and Rosetta together with the filtering of models based on the Z-coordinate. We tested our approach on all unique GPCR structures determined to date and report its performance in comparison with other computational methods targeting the Rhodopsin-like class. We also provide a database of precomputed GPCR models of the human receptors from that class.

Availability

GPCRM server and database: http://gpcrm.biomodellab.eu  相似文献   

20.

Background

Knottins are small, diverse and stable proteins with important drug design potential. They can be classified in 30 families which cover a wide range of sequences (1621 sequenced), three-dimensional structures (155 solved) and functions (> 10). Inter knottin similarity lies mainly between 15% and 40% sequence identity and 1.5 to 4.5 Å backbone deviations although they all share a tightly knotted disulfide core. This important variability is likely to arise from the highly diverse loops which connect the successive knotted cysteines. The prediction of structural models for all knottin sequences would open new directions for the analysis of interaction sites and to provide a better understanding of the structural and functional organization of proteins sharing this scaffold.

Results

We have designed an automated modeling procedure for predicting the three-dimensionnal structure of knottins. The different steps of the homology modeling pipeline were carefully optimized relatively to a test set of knottins with known structures: template selection and alignment, extraction of structural constraints and model building, model evaluation and refinement. After optimization, the accuracy of predicted models was shown to lie between 1.50 and 1.96 Å from native structures at 50% and 10% maximum sequence identity levels, respectively. These average model deviations represent an improvement varying between 0.74 and 1.17 Å over a basic homology modeling derived from a unique template. A database of 1621 structural models for all known knottin sequences was generated and is freely accessible from our web server at http://knottin.cbs.cnrs.fr. Models can also be interactively constructed from any knottin sequence using the structure prediction module Knoter1D3D available from our protein analysis toolkit PAT at http://pat.cbs.cnrs.fr.

Conclusions

This work explores different directions for a systematic homology modeling of a diverse family of protein sequences. In particular, we have shown that the accuracy of the models constructed at a low level of sequence identity can be improved by 1) a careful optimization of the modeling procedure, 2) the combination of multiple structural templates and 3) the use of conserved structural features as modeling restraints.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号