首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu M  Yu L  Wan B  Yu L  Huang Q 《PloS one》2011,6(7):e22644
Protein kinases have been found to possess two characteristic conformations in their activation-loops: the active DFG-in conformation and the inactive DFG-out conformation. Recently, it has been very interesting to develop type-II inhibitors which target the DFG-out conformation and are more specific than the type-I inhibitors binding to the active DFG-in conformation. However, solving crystal structures of kinases with the DFG-out conformation remains a challenge, and this seriously hampers the application of the structure-based approaches in development of novel type-II inhibitors. To overcome this limitation, here we present a computational approach for predicting the DFG-out inactive conformation using the DFG-in active structures, and develop related conformational selection protocols for the uses of the predicted DFG-out models in the binding pose prediction and virtual screening of type-II ligands. With the DFG-out models, we predicted the binding poses for known type-II inhibitors, and the results were found in good agreement with the X-ray crystal structures. We also tested the abilities of the DFG-out models to recognize their specific type-II inhibitors by screening a database of small molecules. The AUC (area under curve) results indicated that the predicted DFG-out models were selective toward their specific type-II inhibitors. Therefore, the computational approach and protocols presented in this study are very promising for the structure-based design and screening of novel type-II kinase inhibitors.  相似文献   

2.
Most protein kinases share a DFG (Asp-Phe-Gly) motif in the ATP site that can assume two distinct conformations, the active DFG-in and the inactive DFG-out states. Small molecule inhibitors able to induce the DFG-out state have received considerable attention in kinase drug discovery. Using a typical DFG-in inhibitor scaffold of Aurora A, a kinase involved in the regulation of cell division, we found that halogen and nitrile substituents directed at the N-terminally flanking residue Ala273 induced global conformational changes in the enzyme, leading to DFG-out inhibitors that are among the most potent Aurora A inhibitors reported to date. The data suggest an unprecedented mechanism of action, in which induced-dipole forces along the Ala273 side chain alter the charge distribution of the DFG backbone, allowing the DFG to unwind. As the ADFG sequence and three-dimensional structure is highly conserved, DFG-out inhibitors of other kinases may be designed by specifically targeting the flanking alanine residue with electric dipoles.  相似文献   

3.
Transforming growth factor-β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, plays an essential role in mediating signals from various pro-inflammatory cytokines and therefore may be a good target for developing anti-inflammation agents. Herein, we report our efforts to identify TAK1 inhibitors with a good selectivity profile with which to initiate medicinal chemistry. Instead of resorting to a high-throughput screening campaign, we performed biosensor-based biophysical screening for a limited number of compounds by taking advantage of existing knowledge on kinase inhibitors. Rather than focusing on one specific inhibition mode, we searched for three different types, Type I (ATP-competitive, DFG-in), Type II (DFG-out), and Type III binders (non-ATP competitive) in parallel, and succeeded in identifying candidates in all three categories efficiently and rapidly. Finally, the biosensor-based binding kinetics for the active and inactive forms of TAK1 were measured to prioritize the Type I and Type II inhibitors. The effort resulted in the identification of a new TAK1-selective Type I compound with a thienopyrimidine scaffold that served as a good starting point for medicinal chemistry.  相似文献   

4.
The non-receptor tyrosine kinase Syk (spleen tyrosine kinase) is a pharmaceutical relevant target because its over-activation is observed in several autoimmune diseases, allergy, and asthma. Here we report the identification of two novel inhibitors of Syk by high-throughput docking into a rare C-helix-out conformation published recently. Interestingly, both compounds are slightly more active on ZAP70 (Zeta-chain-associated protein kinase 70), which is the kinase closest to Syk in the phylogenetic tree of human kinases. Taken together, the docking pose and experimental results suggest that the higher affinity of the inhibitors for ZAP70 than Syk originates from a more populated C-helix-out conformation in ZAP70. The latter observation is congruent with the 100-fold lower intrinsic activity of ZAP70 than Syk, as the C-helix-out conformation is inactive. The pharmacophore features of DFG-in, C-helix-out compounds are analyzed in relation to DFG-out inhibitors.  相似文献   

5.
Structure-based virtual screening (SBVS) protocols were developed to find cyclooxygenase-2 (COX-2) inhibitors using the Protein-Ligand ANT System (PLANTS) docking software. The directory of useful decoys (DUD) dataset for COX-2 was used to retrospectively validate the protocols; the DUD consists of 426 known inhibitors in 13289 decoys. Based on criteria used in the article describing DUD datasets, the default protocol showed poor results. However, having ARG513 as a hydrogen bond anchor increased the quality of the SBVS protocol. The modified protocol showed results that could be well considered, with a maximum enrichment factor (EF(max)) value of 32.2.  相似文献   

6.
Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes   总被引:1,自引:0,他引:1  
The biphenyl amides (BPAs) are a series of p38α MAP kinase inhibitors. Compounds are able to bind to the kinase in either the DFG-in or DFG-out conformation, depending on substituents. X-ray, binding, kinetic and cellular data are shown, providing the most detailed comparison to date between potent compounds from the same chemical series that bind to different p38α conformations. DFG-out-binding compounds could be made more potent than DFG-in-binding compounds by increasing their size. Unexpectedly, compounds that bound to the DGF-out conformation showed diminished selectivity. The kinetics of binding to the isolated enzyme and the effects of compounds on cells were largely unaffected by the kinase conformation bound.  相似文献   

7.
Yes1 kinase has been implicated as a potential therapeutic target in a number of cancers including melanomas, breast cancers, and rhabdomyosarcomas. Described here is the development of a robust and miniaturized biochemical assay for Yes1 kinase that was applied in a high throughput screen (HTS) of kinase-focused small molecule libraries. The HTS provided 144 (17% hit rate) small molecule compounds with IC50 values in the sub-micromolar range. Three of the most potent Yes1 inhibitors were then examined in a cell-based assay for inhibition of cell survival in rhabdomyosarcoma cell lines. Homology models of Yes1 were generated in active and inactive conformations, and docking of inhibitors supports binding to the active conformation (DFG-in) of Yes1. This is the first report of a large high throughput enzymatic activity screen for identification of Yes1 kinase inhibitors, thereby elucidating the polypharmacology of a variety of small molecules and clinical candidates.  相似文献   

8.
Virtual in silico structure-guided modeling, followed by in vitro biochemical screening of a subset of commercially purchasable compound collection resulted in the identification of several human tropomyosin receptor kinase A (hTrkA) inhibitors that bind the orthosteric ATP site and exhibit binding preference for the inactive kinase conformation. The type 2 binding mode with the DFG-out and αC-helix out hTrkA kinase domain conformation was confirmed from X-ray crystallographic solution of a representative inhibitor analog, 1b. Additional hTrkA and hTrkB (selectivity) assays in recombinant cells, neurite outgrowth inhibition using rat PC12 cells, early ADME profiling, and preliminary pharmacokinetic evaluation in rodents guided the lead inhibitor progression in the discovery screening funnel.  相似文献   

9.
The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.  相似文献   

10.
11.
Efforts to combat Alzheimer’s disease are focused predominantly on inhibiting the activity of the enzyme(s) that have been identified to be responsible for the production of the amyloid-forming peptide. However, the inherent complexity associated with the network of pathways leading to the disease may involve additional targets for designing effective therapies. Recent experimental findings have identified abelson tyrosine kinase, a non-receptor kinase as a new target for Alzheimer’s. In this work, we employed energy optimized multiple pharmacophore modeling strategy from multiple c-Abl structures bound with ligands in the inactive ATP binding conformation (DFG-out). Virtual screening followed by docking of molecules from ChemBridge resulted in the identification of 10 best scoring molecules. MD simulations of the top three complexes revealed that Compound A, C are the most stable complexes with the most persistent protein–ligand interactions consistent with the calculated binding affinities for the top three compounds. Given the implied role of c-Abl not only in AD but in Parkinson’s disease, the identified compounds may serve as leads for effective neurotherapeutics.  相似文献   

12.
Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.  相似文献   

13.
《Biophysical journal》2021,120(18):3881-3892
Protein kinases are one of the most important drug targets in the past 10 years. Understanding the inhibitor association processes will profoundly impact new binder designs with preferred binding kinetics. However, after more than a decade of effort, a complete atomistic-level study of kinase inhibitor binding pathways is still lacking. As all kinases share a similar scaffold, we used p38 kinase as a model system to investigate the conformational dynamics and free energy transition of inhibitor binding toward kinases. Two major kinase conformations, Asp-Phe-Gly (DFG)-in and DFG-out, and three types of inhibitors, type I, II, and III, were thoroughly investigated in this work. We performed Brownian dynamics simulations and up to 340 μs Gaussian-accelerated molecular dynamics simulations to capture the inhibitor binding paths and a series of conformational transitions of the p38 kinase from its apo to inhibitor-bound form. Eighteen successful binding trajectories, including all types of inhibitors, are reported herein. Our simulations suggest a mechanism of inhibitor recruitment, a faster ligand association step to a pre-existing DFG-in/DFG-out p38 protein, followed by a slower molecular rearrangement step to adjust the protein-ligand conformation followed by a shift in the energy landscape to reach the final bound state. The ligand association processes also reflect the energetic favor of type I and type II/III inhibitor binding through ATP and allosteric channels, respectively. These different binding routes are directly responsible for the fast (type I binders) and slow (type II/III binders) kinetics of different types of p38 inhibitors. Our findings also echo the recent study of p38 inhibitor dissociation, implying that ligand unbinding could undergo a reverse path of binding, and both processes share similar metastates. This study deepens the understanding of molecular and energetic features of kinase inhibitor-binding processes and will inspire future drug development from a kinetic point of view.  相似文献   

14.
Vascular endothelial growth factor receptor-2 (VEGFR-2) is crucial in promoting tumor angiogenesis and cancer metastasis. Thus, inhibition of VEGFR-2 has appeared as a good tactic for cancer treatment. To find out novel VEGFR-2 inhibitors, first, the PDB structure of VEGFR-2, 6GQO, was selected based on atomic nonlocal environment assessment (ANOLEA) and PROCHECK assessment. 6GQO was then further used for structure-based virtual screening (SBVS) of different molecular databases, including US-FDA approved drugs, US-FDA withdrawn drugs, may bridge, MDPI, and Specs databases using Glide. Based on SBVS, receptor fit, drug-like filters, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of 427877 compounds, the best 22 hits were selected. From the 22 hits, hit 5 complex with 6GQO was put through molecular mechanics/generalized born surface area (MM/GBSA) study and hERG binding. The MM/GBSA study revealed that hit 5 possesses lesser binding free energy with more inferior stability in the receptor pocket than the reference compound. The VEGFR-2 inhibition assay of hit 5 disclosed an IC50 of 165.23 nM against VEGFR-2, which can be possibly enhanced through structural modifications.  相似文献   

15.
Inhibition of p38alpha MAP kinase is a potential approach for the treatment of inflammatory disorders. MKK6-dependent phosphorylation on the activation loop of p38alpha increases its catalytic activity and affinity for ATP. An inhibitor, BIRB796, binds at a site used by the purine moiety of ATP and extends into a "selectivity pocket", which is not used by ATP. It displaces the Asp168-Phe169-Gly170 motif at the start of the activation loop, promoting a "DFG-out" conformation. Some other inhibitors bind only in the purine site, with p38alpha remaining in a "DFG-in" conformation. We now demonstrate that selectivity pocket compounds prevent MKK6-dependent activation of p38alpha in addition to inhibiting catalysis by activated p38alpha. Inhibitors using only the purine site do not prevent MKK6-dependent activation. We present kinetic analyses of seven inhibitors, whose crystal structures as complexes with p38alpha have been determined. This work includes four new crystal structures and a novel assay to measure K(d) for nonactivated p38alpha. Selectivity pocket compounds associate with p38alpha over 30-fold more slowly than purine site compounds, apparently due to low abundance of the DFG-out conformation. At concentrations that inhibit cellular production of an inflammatory cytokine, TNFalpha, selectivity pocket compounds decrease levels of phosphorylated p38alpha and beta. Stabilization of a DFG-out conformation appears to interfere with recognition of p38alpha as a substrate by MKK6. ATP competes less effectively for prevention of activation than for inhibition of catalysis. By binding to a different conformation of the enzyme, compounds that prevent activation offer an alternative approach to modulation of p38alpha.  相似文献   

16.
Bruton tyrosine kinase (BTK) is linked to multiple signalling pathways that regulate cellular survival, activation, and proliferation. A covalent BTK inhibitor has shown favourable outcomes for treating B cell malignant leukaemia. However, covalent inhibitors require a high reactive warhead that may contribute to unexpected toxicity, poor selectivity, or reduced effectiveness in solid tumours. Herein, we report the identification of a novel noncovalent BTK inhibitor. The binding interactions (i.e. interactions from known BTK inhibitors) for the BTK binding site were identified and incorporated into a structure-based virtual screening (SBVS). Top-rank compounds were selected and testing revealed a BTK inhibitor with >50% inhibition at 10 µM concentration. Examining analogues revealed further BTK inhibitors. When tested across solid tumour cell lines, one inhibitor showed favourable inhibitory activity, suggesting its potential for targeting BTK malignant tumours. This inhibitor could serve as a basis for developing an effective BTK inhibitor targeting solid cancers.  相似文献   

17.
The three-dimensional pharmacophore model of apoptosis signal-regulating kinase 1 (ASK1) inhibitors has been developed with PharmaGist program. The positions of pharmacophore features in the model correspond to conformations of ASK1 highly active inhibitors in which they interact with ATP-binding site of ASK1. The generated pharmacophore model allows accurately predict active and inactive compounds and can be of great use for virtual screening aimed at discovering novel ASK1 inhibitors.  相似文献   

18.
Development of inhibitors that target inactive kinase conformations is becoming a more attractive approach to kinase inhibitor research. The major advantage of this methodology is that targeting the inactive conformation reduces competition with high intracellular adenosine triphosphate (ATP) concentrations. p38α Mitogen-activated protein kinase (MAPK) signaling has been identified as the principal mediator of inflammation associated with a spectrum of disorders (e.g., arthritis, Alzheimer’s disease, various malignancies). To allow identification and development of p38α MAPK inhibitors that preferentially bind to the inactive conformation, a novel fluorescence polarization-based binding assay is presented. The assay is homogeneous, requires low amounts of the kinase and fluoroprobe, and does not rely on radioactivity. It may, therefore, offer an inexpensive alternative to current p38α MAPK inhibitor screening methods. The validation of the system with known p38α MAPK inhibitors confirmed that the binding assay, rather than the conventional enzyme activity assay, correlates with cellular efficacy. Finally, we show that pyridinyl imidazoles that potently bind to the inactive p38α MAPK prevent activation of p38 MAPK in living cells, suggesting that pyridinyl imidazoles other than SB203580 are able to induce the DFG-out conformation that is incompatible with activation (where DFG is a single-letter amino acid code for the aspartate-phenylalanine-glycine sequence at the start of the activation loop).  相似文献   

19.
Doramapimod (BIRB-796) is widely recognized as one of the most potent and selective type II inhibitors of human p38α mitogen-activated protein kinase (MAPK); however, the understanding of its binding mechanism remains incomplete. Previous studies indicated high affinity of the ligand to a so-called allosteric pocket revealed only in the ‘out’ state of the DFG motif (i.e. Asp168-Phe169-Gly170) when Phe169 becomes fully exposed to the solvent. The possibility of alternative binding in the DFG-in state was hypothesized, but the molecular mechanism was not known. Methods of bioinformatics, docking and long-time scale classical and accelerated molecular dynamics have been applied to study the interaction of Doramapimod with the human p38α MAPK. It was shown that Doramapimod can bind to the protein even when the Phe169 is fully buried inside the allosteric pocket and the kinase activation loop is in the DFG-in state. Orientation of the inhibitor in such a complex is significantly different from that in the known crystallographic complex formed by the kinase in the DFG-out state; however, the Doramapimod’s binding is followed by the ligand-induced conformational changes, which finally improve accommodation of the inhibitor. Molecular modelling has confirmed that Doramapimod combines the features of type I and II inhibitors of p38α MAPK, i.e. can directly and indirectly compete with the ATP binding. It can be concluded that optimization of the initial binding in the DFG-in state and the final accommodation in the DFG-out state should be both considered at designing novel efficient type II inhibitors of MAPK and homologous proteins.

Communicated by Ramaswamy H. Sarma  相似文献   


20.
Accurate free-energy calculations provide mechanistic insights into molecular recognition and conformational equilibrium. In this work, we performed free-energy calculations to study the thermodynamic properties of different states of molecular systems in their equilibrium basin, and obtained accurate absolute binding free-energy calculations for protein-ligand binding using a newly developed M2 algorithm. We used a range of Asp-Phe-Gly (DFG)-in/out p38α mitogen-activated protein kinase inhibitors as our test cases. We also focused on the flexible DFG motif, which is closely connected to kinase activation and inhibitor binding. Our calculations explain the coexistence of DFG-in and DFG-out states of the loop and reveal different components (e.g., configurational entropy and enthalpy) that stabilize the apo p38α conformations. To study novel ligand-binding modes and the key driving forces behind them, we computed the absolute binding free energies of 30 p38α inhibitors, including analogs with unavailable experimental structures. The calculations revealed multiple stable, complex conformations and changes in p38α and inhibitor conformations, as well as balance in several energetic terms and configurational entropy loss. The results provide relevant physics that can aid in designing inhibitors and understanding protein conformational equilibrium. Our approach is fast for use with proteins that contain flexible regions for structure-based drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号