首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

There is an urgent need for the discovery and development of new drugs against Mycobacterium tuberculosis, the causative agent of tuberculosis, especially due to the recent emergence of multi-drug and extensively-drug resistant strains. Herein, we have examined the susceptibility of mycobacteria to the natural product platensimycin.

Methods and Findings

We have demonstrated that platensimycin has bacteriostatic activity against the fast growing Mycobacterium smegmatis (MIC = 14 µg/ml) and against Mycobacterium tuberculosis (MIC = 12 µg/ml). Growth in the presence of paltensimycin specifically inhibited the biosynthesis of mycolic acids suggesting that the antibiotic targeted the components of the mycolate biosynthesis complex. Given the inhibitory activity of platensimycin against β-ketoacyl-ACP synthases from Staphylococcus aureus, M. tuberculosis KasA, KasB or FabH were overexpressed in M. smegmatis to establish whether these mycobacterial KAS enzymes were targets of platensimycin. In M. smegmatis overexpression of kasA or kasB increased the MIC of the strains from 14 µg/ml, to 30 and 124 µg/ml respectively. However, overexpression of fabH on did not affect the MIC. Additionally, consistent with the overexpression data, in vitro assays using purified proteins demonstrated that platensimycin inhibited Mt-KasA and Mt-KasB, but not Mt-FabH.

Significance

Our results have shown that platensimycin is active against mycobacterial KasA and KasB and is thus an exciting lead compound against M. tuberculosis and the development of new synthetic analogues.  相似文献   

2.
Among the many types of plant stressors, pathogen attack, mainly fungi and bacteria can cause particularly severe damage both to individual plants and, on a wider scale, to agricultural productivity. The magnitude of these pathogen-induced problems has stimulated rapid progress in green biotechnology research into plant defense mechanisms. Plants can develop local and systemic wide-spectrum resistance induced by their exposure to virulent (systemic acquired resistance—SAR) or non-pathogenic microbes and various chemical elicitors (induced systemic resistance—ISR). β-Aminobutyric acid (BABA), non-protein amino acid, is though to be important component of the signaling pathway regulating ISR response in plants. After treatment with BABA or various chemicals, after infection by a necrotizing pathogen, colonization of the roots by beneficial microbes many plants establish a unique physiological state that is called the “primed” state of the plant. This review will focus on the recent knowledge about the role of BABA in the induction of ISR against pathogens mainly against fungi.  相似文献   

3.
Aggregated β-amyloid (Aβ) plays crucial roles in Alzheimer's disease (AD) pathogenesis, therefore blockade of Aβ aggregation is considered as a potential therapeutic target. We designed and synthesized small molecules to reduce Aβ-induced cytotoxicity by inhibiting Aβ aggregation. The small molecules were screened via ThT, MTT, and cell-based cytotoxicity assay (Aβ burden assay). Selected compounds 1c, 1d, 1e, and 1f were then investigated by evaluating their effects on cognitive impairment of acute AD mice model. Learning and memory dysfunction by injection of Aβ(1-42) was recovered by administration of these molecules. Especially, 1d showed the best recovery activity in Y-maze task, object recognition task, and passive avoidance task with dose dependent manner. These results suggest that 1d has high potential as a therapeutic agent for AD.  相似文献   

4.
Alzheimer's disease is one of the most common forms of dementia in the elderly. One of its hallmarks is the abnormal aggregation and deposition of β-amyloid (Aβ). Endogenous and exogenous metal ions seem to influence β-amyloid folding process, aggregation and deposition. Besides these variables other elements appear to affect β-amyloid behavior, such as cholesterol. The physiological concentration of cholesterol in the cerebrospinal fluid (CSF) was used in order to determine the extent in which Aβ and Aβ-metal complexes in vitro aggregation and their toxicity on human neuroblastoma cell cultures is affected. Cholesterol did not appear to influence Aβ and Aβ-metal complexes aggregation, but it was effective in protecting neuroblastoma cells against Aβ complexes' toxicity. The Aβ-Al complex seemed to be the most effective in disrupting and damaging membrane external layer, and simultaneously it appears to increase its toxicity on cell cultures; both of these effects are preventable by cholesterol. The presence in physiological concentrations of cholesterol seemed to compensate membrane damage that occurred to neuroblastoma cells. These findings appear to contradict some data reported in literature. We believe that our results might shed some light on the role played by cholesterol at physiological concentrations in both cellular balance and membrane protection.  相似文献   

5.
6.
Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Aβ25-35 (40 μM)-induced decrease in mitochondrial respiration, adenosine 5′-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 μM) effectively prevented Aβ-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Aβ at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA.  相似文献   

7.
8.
Reactive oxygen species (ROS) cause irreversible damage to biological macromolecules, resulting in many diseases. Reduced water (RW) such as hydrogen-rich electrolyzed reduced water and natural reduced waters like Hita Tenryosui water in Japan and Nordenau water in Germany that are known to improve various diseases, could protect a hamster pancreatic β cell line, HIT-T15 from alloxan-induced cell damage. Alloxan, a diabetogenic compound, is used to induce type 1 diabetes mellitus in animals. Its diabetogenic effect is exerted via the production of ROS. Alloxan-treated HIT-T15 cells exhibited lowered viability, increased intracellular ROS levels, elevated cytosolic free Ca2+ concentration, DNA fragmentation, decreased intracellular ATP levels and lowering of glucose-stimulated release of insulin. RW completely prevented the generation of alloxan-induced ROS, increase of cytosolic Ca2+ concentration, decrease of intracellular ATP level, and lowering of glucose-stimulated insulin release, and strongly blocked DNA fragmentation, partially suppressing the lowering of viability of alloxan-treated cells. Intracellular ATP levels and glucose-stimulated insulin secretion were increased by RW to 2–3.5 times and 2–4 times, respectively, suggesting that RW enhances the glucose-sensitivity and glucose response of β-cells. The protective activity of RW was stable at 4 °C for over a month, but was lost by autoclaving. These results suggest that RW protects pancreatic β-cells from alloxan-induced cell damage by preventing alloxan-derived ROS generation. RW may be useful in preventing alloxan-induced type 1-diabetes mellitus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Wang S  Leng XY  Yan YB 《Biochemistry》2011,50(48):10451-10461
β-Crystallins are the major structural proteins in mammalian lens, and their stability is critical in maintaining the transparency and refraction index of the lens. Among the seven β-crystallins, βA3-crystallin and βB1-crystallin, an acidic and a basic β-crystallin, respectively, can form heteromers in vivo. However, the physiological roles of the heteromer have not been fully elucidated. In this research, we studied whether the basic β-crystallin facilitates the folding of acidic β-crystallin. Equilibrium folding studies revealed that the βA3-crystallin and βB1-crystallin homomers and the βA3/βB1-crystallin heteromer all undergo similar five-state folding pathways which include one dimeric and two monomeric intermediates. βA3-Crystallin was found to be the most unstable among the three proteins, and the transition curve of βA3/βB1-crystallin was close to that of βB1-crystallin. The dimeric intermediate may be a critical determinant in the aggregation process and thus is crucial to the lifelong stability of the β-crystallins. A comparison of the Gibbs free energy of the equilibrium folding suggested that the formation of heteromer contributed to the stabilization of the dimer interface. On the other hand, βA3-crystallin, the only protein whose refolding is challenged by serious aggregation, can be protected by βB1-crystallin in a dose-dependent manner during the kinetic co-refolding. However, the protection is not observed in the presence of the pre-existed well-folded βB1-crystallin. These findings suggested that the formation of β-crystallin heteromers not only stabilizes the unstable acidic β-crystallin but also protects them against aggregation during refolding from the stress-denatured states.  相似文献   

10.
Antibody-based technology is the main method for diagnosis and treatment of snake bite envenoming currently. However, the development of an antibody, polyclonal or monoclonal, is a complicated and costly procedure. Aptamers are single stranded oligonucleotides that recognize specific targets such as proteins and have shown great potential over the years as diagnostic and therapeutic agents. In contrast to antibodies, aptamers can be selected in vitro without immunization of animals, and synthesized chemically with extreme accuracy, low cost and high degree of purity. In this study we firstly report on the identification of DNA aptamers that bind to β-bungarotoxin (β-BuTx), a neurotoxin from the venom of Bungarus multicinctus. A plate-SELEX method was used for the selection of β-BuTx specific aptamers. After 10 rounds of selection, four aptamer candidates were obtained, with the dissociation constant ranged from 65.9 nM to 995 nM measured by fluorescence spectroscopy. Competitive binding assays using both the fluorescently labeled and unlabeled aptamers revealed that the four aptamers bound to the same binding site of β-BuTx. The best binder, βB-1, bound specifically to β-BuTx, but not to BSA, casein or α-Bungarotoxin. Moreover, electrophoretic mobility shift assay and enzyme-linked aptamer assay demonstrated that βB-1 could discriminate B. multicinctus venom from other snake venoms tested. The results suggest that aptamer βB-1 can serve as a useful tool for the design and development of drugs and diagnostic tests for β-BuTx poisoning and B. multicinctus bites.  相似文献   

11.
Molecular cloning techniques have been used to produce abundant amounts of recombinant glycosyltransferases for biochemical studies. We recently cloned a cDNA which encoded bovine mucin core 2 6N-acetylglucosaminyl transferase (C2TF). Poly-histidine-C2TF fusion protein was generated from the cloned cDNA in the E. coli Xpress system and used to produce monoclonal antibodies (MAbs). We obtained seven hybridomas which secreted MAbs against bovine C2TF in mouse ascites with titers ranging from 1:1280 to 1:40960 as assessed by immunofluorescence assay (IF). Isotyping revealed that all seven MAbs were IgG (4 IgG1, 2 IgG2b and 1 IgG2a). The affinity constants (M–2) for these MAbs range from 5.4 × 107 to 1.2 × 109. These MAbs recognized bovine C2TF in tissue sections and on Western blottings. Six of these MAbs reacted with human core 2-M enzyme and one with both core 2-L and core 2-M enzymes on Western blottings. Therefore, These antibodies should be useful for further study of bovine and human core 2 enzymes.  相似文献   

12.
Dithiocarbamates (DTCs) prepared from primary or secondary amines, which incorporated amino/hydroxyl-alkyl, mono-/bicyclic aliphatic/heterocyclic rings based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, were investigated for the inhibition of α- and β-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, such as the human (h) isoform hCA I and II, as well as the Saccharomyces cerevisiae β-CA, scCA. The yeast and its β-CA were shown earlier to be useful models of pathogenic fungal infections. The DTCs investigated here were medium potency hCA I inhibitors (KIs of 66.5–910?nM), were more effective as hCA II inhibitors (KIs of 8.9–107?nM) and some of them showed excellent, low nanomolar activity against the yeast enzyme, with inhibition constants ranging between 6.4 and 259?nM. The detailed structure activity relationship for inhibition of the yeast and human enzymes is discussed. Several of the investigated DTCs showed excellent selectivity ratios for inhibiting the yeast over the human cytosolic CA isoforms.  相似文献   

13.
A -galactosidase (EC 3.2.1.23) capable of degrading a number of fruit cell-wall polysaccharides in vitro, was isolated from ripening kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang et A.R. Ferguson cv. Hayward). The enzyme has a molecular weight of approximately 60 kDa by gel permeation and consists of several basic isoforms. Several polypeptides were enriched during purification, with 33-, 46- and 67-kDa bands being predominant after sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The optimum activity of the enzyme against p-nitrophenyl--d-galactopyranoside was at pH 3.2, but against a galactan purified from kiwifruit cell walls, it was at pH 4.9. The enzyme was specific for galactosyl residues in the -configuration, releasing galactose from a variety of kiwifruit cell-wall polysaccharide fractions including cell wall material, Na2CO3-soluble pectin, high-molecular-weight galactan, xyloglucan, and galactoglucomannan. A galactosylated glucuronomannan found throughout the kiwifruit plant was also a substrate for the enzyme. The results indicate that the enzyme attacks the non-reducing end of galactose side chains, cleaving single galactose residues which may be attached to the 2, 3, 4, or 6 position of the aglycone. Activity of the enzyme in-vitro was too low to account for the total loss of galactose from the cell walls during ripening. If the -galactosidase of this study is solely responsible for the removal of galactose from the cell wall during ripening then its in-vivo activity must be much greater than that observed in-vitro.Abbreviations CWM cell wall material - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis We thank Bronwyn Culling and Teresa Wegrzyn for assistance and acknowledge a contribution towards the cost of the research from the New Zealand Kiwifruit Marketing Board.  相似文献   

14.
To clarify whether apoptosis is involved in the injury processes induced by autoantibodyagainst cardiac β_1-adrenoceptor,we investigated the biological and apoptotic effects of antibodies on culturedneonatal rat cardiomyocytes.Wistar rats were immunized with peptides corresponding to the second extra-cellular loop of the β_1-adrenoceptor to induce the production of anti-β_1-adrenoceptor antibodies in the sera.Immunoglobulin(Ig)G in the sera was detected using synthetic antigen enzyme-linked immunosorbentassay and purified using the diethylaminoethyl cellulose ion exchange technique.Apoptosis of cardiomyo-cytes was evaluated using agarose gel electrophoresis and flow cytometry.Our results showed that thepositive serum IgG greatly increased the beating rates of cardiomyocytes and showed an"agonist-like"activity.Furthermore,positive serum IgG induced cardiomyocyte apoptosis after treatment with β_1-adrenoceptor overstimulation for 48h.The effects of monoclonal antibody against β_-adrenoceptor werealso found to be similar to those of positive serum IgG.It was suggested that the autoantibody could inducecardiomyocyte apoptosis by excessive stimulation of β_1-adrenoceptor.  相似文献   

15.
16.
A series of β-carbolines possessing the aryl group at C-1 position has been synthesized from tryptophan. The newly synthesized compounds were screened for their in vitro anticancer activity against various human cancer cell lines by MTT assay. Some of them exhibited anticancer activity with IC50 values lower than 10 μM outdistanced the cisplatin level. Structure–activity relationship reveals that the alcohol substituents at C-3 position played an important role in inhibition activity.  相似文献   

17.
In this study we prepared an inclusion complex between an iodide analogue of metronidazole (MTZ-I) and cyclodextrin (CD) to develop a safer and more effective method of treating Trypanosoma cruzi infections. According to our results, MTZ-I and MTZ-I:β-CD were 10 times more active than MTZ, demonstrating that the presence of an iodine atom on the side chain increased the trypanocidal activity while maintaining its cytotoxicity. The selective index shows that MTZ-I was 10 times more active against T. cruzi than it was against mammalian cells. The modification of MTZ side chains provides a promising avenue for the development of new drugs.  相似文献   

18.
19.
New onset of diabetes is associated with the use of statins. We have recently demonstrated that pravastatin-treated hypercholesterolemic LDL receptor knockout (LDLr−/−) mice exhibit reductions in insulin secretion and increased islet cell death and oxidative stress. Here, we hypothesized that these diabetogenic effects of pravastatin could be counteracted by treatment with the antioxidant coenzyme Q 10 (CoQ 10), an intermediate generated in the cholesterol synthesis pathway. LDLr −/− mice were treated with pravastatin and/or CoQ 10 for 2 months. Pravastatin treatment resulted in a 75% decrease of liver CoQ 10 content. Dietary CoQ 10 supplementation of pravastatin-treated mice reversed fasting hyperglycemia, improved glucose tolerance (20%) and insulin sensitivity (>2-fold), and fully restored islet glucose-stimulated insulin secretion impaired by pravastatin (40%). Pravastatin had no effect on insulin secretion of wild-type mice. In vitro, insulin-secreting INS1E cells cotreated with CoQ 10 were protected from cell death and oxidative stress induced by pravastatin. Simvastatin and atorvastatin were more potent in inducing dose-dependent INS1E cell death (10–15-fold), which were also attenuated by CoQ 10 cotreatment. Together, these results demonstrate that statins impair β-cell redox balance, function and viability. However, CoQ 10 supplementation can protect the statins detrimental effects on the endocrine pancreas.  相似文献   

20.
The aim of this study was to determine the antigenotoxic potential of two newly synthesized β-aminoketones against N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 9-aminoacridine (9-AA)-induced mutagenesis. The mutant bacterial tester strains were MNNG-sensitive Escherichia coli WP2 uvrA and 9-AA-sensitive Salmonella typhimurium TA1537. Both test compounds showed significant antimutagenic activity at various tested concentrations. The inhibition rates ranged from 29.5% (compound 1: 2 mM/plate) to 47.5% (compound 2: 1.5 mM/plate) for MNNG and from 25.0% (compound 2: 1 mM/plate) to 52.1% (compound 2: 2.5 mM/plate) for 9-AA genotoxicity. Moreover, the mutagenicity of the test compounds was investigated by using the same strains. Neither test compound has mutagenic properties on the bacterial strains at the tested concentrations. Thus, the findings of the present study give valuable information about chemical prevention from MNNG and 9-AA genotoxicity by using synthetic β-aminoketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号