首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Although the ubiquitous helix-loop-helix (HLH) protein E12 does not homodimerize efficiently, the myogenic factor MyoD forms an avid DNA-binding heterodimer with E12 through the conserved HLH dimerization domain. However, the mechanism which ensures this selective dimerization is not understood at present. In our functional studies of various amino acid changes in the E12 HLH domain, we found that a single substitution in E12 helix 1 can abolish the effect of the E12 inhibitory domain and results in the efficient DNA binding of the E12 homodimer. Competition experiments revealed that the inhibitory domain, in fact, blocks the dimerization of E12 rather than DNA binding. MyoD contains two glutamic residues in helix 2 that are required for efficient dimerization with E12. More importantly, these residues were not essential for dimerization with E12 mutants in which the dimerization inhibitory domain had been relaxed, or for dimerization with E47 which does not contain the inhibitory domain owing to the use of an alternative exon. The positions of these glutamic residues are conserved among the four myogenic factors. Thus, members of the MyoD family of gene regulatory proteins can overcome the E12 dimerization inhibitory domain through a mechanism involving, in part, the negatively charged amino acid residues in helix 2. This result describes a novel mechanism facilitating the selective formation of the MyoD(MRF)-E12 heterodimer that enhances dimerization specificity and may apply to other members of the E-protein family.  相似文献   

10.
11.
12.
13.
The lipid phosphatase Ship2 is a protein that intervenes in several diseases such as diabetes, cancer, neurodegeneration, and atherosclerosis. It is made up of a catalytic domain and several protein docking modules such as a C‐terminal Sam (Sterile alpha motif) domain. The Sam domain of Ship2 (Ship2–Sam) binds to the Sam domains of the EphA2 receptor (EphA2–Sam) and the PI3K effector protein Arap3 (Arap3–Sam). These heterotypic Sam–Sam interactions occur through formation of dimers presenting the canonical “Mid Loop/End Helix” binding mode. The central region of Ship2–Sam, spanning the C‐terminal end of α2, the α3 and α4 helices together with the α2α3 and α3α4 interhelical loops, forms the Mid Loop surface that is needed to bind partners Sam domains. A peptide encompassing most of the Ship2–Sam Mid Loop interface (Shiptide) capable of binding to both EphA2–Sam and Arap3–Sam, was previously identified. Here we investigated the conformational features of this peptide, through solution CD and NMR studies in different conditions. These studies reveal that the peptide is highly flexible in aqueous buffer, while it adopts a helical conformation in presence of 2,2,2‐trifluoroethanol. The discovered structural insights and in particular the identification of a helical motif, may lead to the design of more constrained and possibly cell permeable Shiptide analogs that could work as efficient antagonists of Ship2–Sam heterotypic interactions and embrace therapeutic applications. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1088–1098, 2014.  相似文献   

14.
15.
16.
17.
Hsp47, an endoplasmic reticulum-resident heat shock protein in fibroblasts has gelatin-binding properties. It had been hypothesized that it functions as a chaperone regulating procollagen chain folding and/or assembly, but the mechanism of the hsp47-procollagen I interaction was not clear. Hsp47 could bind to both denatured and native procollagen I. A series of competition studies were carried out in which various collagens and collagen domain peptides were incubated with35[S]-methionine-labeled murine 3T6 cell lysates prior to mixing with gelatin-Sepharose 4B beads. The gelatin-bound proteins were collected and analyzed by gel electrophoresis and autoradiography. Collagenase digested procollagen I had the same effect as denatured intact procollagen, indicating that the propeptides were the major interaction sites. The addition of intact pro α1 (l)-N-propeptide at 25 μg/ml compeletely inhibited hsp47 binding to the gelatin-Sepharose. Even the pentapeptide VPTDE, residues 86–90 of the pro α1 (l)-N-propeptide, inhibits hsp47-gelatin binding. These data implicating the pro α1 (l)-N-propeptide domain were confirmed by examination of polysome-associated pro α chains. The nascent pro α1(l)-chains with intact N-propeptide regions could be precipitated by monoclonal hsp47 antibody 11D10, but could not be precipitated by monoclonal anti-pro α1 (l)-N-propeptide antibody SP1.D8 unless dissociated from the hsp47. GST-fusion protein constructs of residues 23–108 (NP1), 23–151 (NP2), and 23–178 (NP3) within the pro α1 (l)-N-propeptide were coupled to Sepharose 4B and used as affinity beads for collection of hsp47 from 3T6 cell lysates. NP1 and NP2 both showed strong specific binding for lysate hsp47. Finally, the interaction was studied in membrane-free in vitro cotranslation systems in which the complete pro α1(l)- and pro α2(l)-chain RNAs were translated alone and in mixtures with each other and with hsp47 RNA. There was no interaction evident between pro α2(l)-chains and hsp47, whereas there was strong interaction between pro α1 (l)-chains and nascent hsp47. SP1.D8 could not precipitate pro α1 (l)-chains from the translation mix if nascent hsp47 was present. These data all suggest that if hsp47 has a “chaperone” role during procollagen chain processing and folding it performs this specific role via its preferential interaction with the proα1 (l) chain, and the pro α1 (l) amino-propeptide region in particular. © 1995 Wiley-Liss, Inc.  相似文献   

18.
19.
Apolipoprotein E3 (apoE3) is an exchangeable apolipoprotein that plays a critical role in cholesterol homeostasis. The N-terminal (NT) domain of apoE3 (residues 1–191) is folded into a helix bundle comprised of 4 amphipathic α-helices: H1, H2, H3 and H4, flanked by flexible helices N1 and N2, and Hinge Helix 1 (Hinge H1), at the N-and C-terminal sides of the helix bundle, respectively. The NT domain plays a critical role in binding to the low density lipoprotein receptor (LDLR), which eventually leads to lowering of plasma cholesterol levels. In order to be recognized by the LDLR, the helix bundle has to open and undergo a conformational change. The objective of the study was to understand the mechanism of opening of the helix bundle. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) revealed that apoE3 NT domain adopts several disordered and unfolded regions, with H2 exhibiting relatively little protection against exchange-in compared to H1, H3, and H4. Site-directed fluorescence labeling indicated that H2 not only has the highest degree of solvent exposure but also the most flexibility in the helix bundle. It also indicated that the lipoprotein behavior of H1 was significnatly different from that of H2, H3 and H4. These results suggest that the opening of the helix bundle is likely initiated at the flexible end of H2 and the loop linking H2/H3, and involves movement of H2/H3 away from H1/H4. Together, these observations offer mechanistic insight suggesting a regulated helix bundle opening of apoE3 NT domain can be triggered by lipid binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号