首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Butanol has recently gained increasing interest due to escalating prices in petroleum fuels and concerns on the energy crisis. However, the butanol production cost with conventional acetone–butanol–ethanol fermentation by Clostridium spp. was higher than that of petrochemical processes due to the low butanol titer, yield, and productivity in bioprocesses. In particular, a low butanol titer usually leads to an extremely high recovery cost. Conventional biobutanol recovery by distillation is an energy-intensive process, which has largely restricted the economic production of biobutanol. This article thus reviews the latest studies on butanol recovery techniques including gas stripping, liquid–liquid extraction, adsorption, and membrane-based techniques, which can be used for in situ recovery of inhibitory products to enhance butanol production. The productivity of the fermentation system is improved efficiently using the in situ recovery technology; however, the recovered butanol titer remains low due to the limitations from each one of these recovery technologies, especially when the feed butanol concentration is lower than 1 % (w/v). Therefore, several innovative multi-stage hybrid processes have been proposed and are discussed in this review. These hybrid processes including two-stage gas stripping and multi-stage pervaporation have high butanol selectivity, considerably higher energy and production efficiency, and should outperform the conventional processes using single separation step or method. The development of these new integrated processes will give a momentum for the sustainable production of industrial biobutanol.  相似文献   

2.
《Biotechnology advances》2017,35(2):310-322
Butanol as an advanced biofuel has gained great attention due to its environmental benefits and superior properties compared to ethanol. However, the cost of biobutanol production via conventional acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is not economically competitive, which has hampered its industrial application. The strain performance and downstream process greatly impact the economics of biobutanol production. Although various engineered strains with carefully orchestrated metabolic and sporulation-specific pathways have been developed, none of them is ideal for industrial biobutanol production. For further strain improvement, it is necessary to develop advanced genome editing tools and a deep understanding of cellular functioning of genes in metabolic and regulatory pathways. Processes with integrated product recovery can increase fermentation productivity by continuously removing inhibitory products while generating butanol (ABE) in a concentrated solution. In this review, we provide an overview of recent advances in C. acetobutylicum strain engineering and process development focusing on in situ product recovery. With deep understanding of systematic cellular bioinformatics, the exploration of state-of-the-art genome editing tools such as CRISPR-Cas for targeted gene knock-out and knock-in would play a vital role in Clostridium cell engineering for biobutanol production. Developing advanced hybrid separation processes for in situ butanol recovery, which will be discussed with a detailed comparison of advantages and disadvantages of various recovery techniques, is also imperative to the economical development of biobutanol.  相似文献   

3.
With the incessant fluctuations in oil prices and increasing stress from environmental pollution, renewed attention is being paid to the microbial production of biofuels from renewable sources. As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hygroscopicity. A variety of cheap substrates have been successfully applied in the production of biobutanol, highlighting the commercial potential of biobutanol development. In this review, in order to better understand the process of acetone–butanol–ethanol production, traditional clostridia fermentation is discussed. Sporulation is probably induced by solvent formation, and the molecular mechanism leading to the initiation of sporulation and solventogenesis is also investigated. Different strategies are employed in the metabolic engineering of clostridia that aim to enhancing solvent production, improve selectivity for butanol production, and increase the tolerance of clostridia to solvents. However, it will be hard to make breakthroughs in the metabolic engineering of clostridia for butanol production without gaining a deeper understanding of the genetic background of clostridia and developing more efficient genetic tools for clostridia. Therefore, increasing attention has been paid to the metabolic engineering of E. coli for butanol production. The importation and expression of a non-clostridial butanol-producing pathway in E. coli is probably the most promising strategy for butanol biosynthesis. Due to the lower butanol titers in the fermentation broth, simultaneous fermentation and product removal techniques have been developed to reduce the cost of butanol recovery. Gas stripping is the best technique for butanol recovery found so far.  相似文献   

4.
The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017  相似文献   

5.
Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone–butanol–ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.  相似文献   

6.
7.
《Process Biochemistry》2010,45(12):1899-1903
Biobutanol has currently attracted considerable attention as an alternative biofuel to the petroleum-derived fuel due to several advantages including high energy content, low water absorption and easy application to the existing gasoline infrastructure. However, its production has still faced many obstacles to overcome including lack of energy-efficient butanol separation process from fermentation broth. To solve this issue, the extraction behavior of butanol from aqueous media into a variety of imidazolium-based ionic liquids (ILs) was investigated by liquid–liquid extraction. To understand the effect of ILs properties, the solvent characteristics of ILs such as mutual solubility of feed solvent (water) and extraction solvent (IL), distribution coefficient of butanol between water and IL, selectivity, and extraction efficiency were correlated with hydrophobicity and polarity of ILs. The butanol distribution between ILs and water strongly depends on the hydrophobicity of anions of ILs followed by the hydrophobicity of cations of ILs. On the other hand, butanol extraction efficiency and selectivity depend on the polarity of ILs. Considering extraction efficiency and selectivity, [Tf2N]-based ILs among the tested ILs showed to be the best extract solvent for the recovery of butanol from aqueous media. Among the studied ILs, [Omim][Tf2N] showed the highest butanol distribution coefficient (1.939), selectivity (132) and extraction efficiency (74%) at 323.15 K, respectively.  相似文献   

8.
Clostridial acetone/butanol fermentation used to rank second only to ethanol fermentation by yeast in its scale of production and thus is one of the largest biotechnological processes known. Its decline since about 1950 has been caused by increasing substrate costs and the availability of much cheaper feedstocks for chemical solvent synthesis by the petrochemical industry. The so-called oil crisis in 1973 led to renewed interest in novel fermentation and product recovery technologies as well as in the metabolism and genetics of the bacterial species involved. As a consequence, almost all of the enzymes leading to solvent formation are known, their genes have been sequenced (in fact, Clostridium acetobutylicum has been recently included in the microbial genome sequencing project), the regulatory mechanisms controlling solventogenesis have begun to emerge and recombinant DNA techniques have been developed for these clostridia to construct specific production strains. In parallel, cheap agricultural-waste-based feedstocks have been exploited for their potential as novel substrates, continuous culture methods have been successfully established and new on-line product recovery technologies are now available, such as gas stripping, liquid/liquid extraction, and membrane-based methods. In combination with these achievements, a reintroduction of acetone/butanol fermentation on an industrial scale seems to be economically feasible, a view that is supported by a new pilot plant in Austria recently coming into operation. Received: 18 December 1997 / Received revision: 27 January 1998 / Accepted: 27 January 1998  相似文献   

9.
Strain degeneration in solventogenic clostridia is a known problem in the technical acetone–butanol fermentation bioprocess, especially in the continuous process mode. Clostridial strain degeneration was studied by Fourier transform infrared (FT-IR) spectroscopy of the bacterial cells. Degenerative variant formation in two strains, Clostridium beijerinckii NCIMB 8052 and Clostridium species AA332, was detected spectroscopically. Colonies on solid media were sampled, or assayed directly in situ by IR microscopy. It has previously been shown that the distinctive acidogenic and solventogenic physiological phases of Clostridium acetobutylicum in liquid medium can be discriminated by FT-IR spectroscopy. This was confirmed here for C. beijerinckii NCIMB 8052. The proportion of degenerate cells in a mixed population in liquid medium could be quantified, as the spectral features change in different ways during the normal growth cycle of wild type organisms and degenerate variants in batch culture. This opens a new perspective for physiology-based process monitoring and control, especially of the continuous acetone–butanol fermentation. Journal of Industrial Microbiology & Biotechnology (2001) 27, 314–321. Received 06 October 2000/ Accepted in revised form 20 April 2001  相似文献   

10.
Recent environmental economic developments generate a need for sustainable and cost‐effective (microbial) processes for the production of high‐volume, low‐priced bulk chemicals. As an example, n‐butanol has, as a second‐generation biofuel, beneficial characteristics compared to ethanol in liquid transportation fuel applications. The industrial revival of the classic n‐butanol (ABE) fermentation requires process and strain engineering solutions for overcoming the main process limitations: product toxicity and low space–time yield. Reaction intensification on the biocatalyst, fermentation, and bioprocess level can be based on economic and ecologic evaluations using quantifiable constraints. This review describes the means of process intensification for biotechnological processes. A quantitative approach is then used for the comparison of the massive literature on n‐butanol fermentation. A comprehensive literature study—including key fermentation performance parameters—is presented and the results are visualized using the window of operation methodology. The comparison allowed the identification of the key constraints, high cell densities, high strain stability, high specific production rate, cheap in situ product removal, high n‐butanol tolerance, to operate in situ product removal efficiently, and cheap carbon source. It can thus be used as a guideline for the bioengineer during the combined biocatalyst, fermentation, and bioprocess development and intensification.  相似文献   

11.
Selecting an appropriate separation technique is essential for the application of in situ product removal (ISPR) technology in biological processes. In this work, a three-stage systematic design method is proposed as a guide to integrate ionic liquid (IL)-based separation techniques into ISPR. This design method combines the selection of a suitable ISPR processing scheme, the optimal design of an IL-based liquid–liquid extraction (LLE) system followed by process simulation and evaluation. As a proof of concept, results for a conventional acetone–butanol–ethanol fermentation are presented (40,000 ton/year butanol production). In this application, ILs tetradecyl(trihexyl)phosphonium tetracyanoborate ([TDPh][TCB]) and tetraoctylammonium 2-methyl-1-naphthoate ([TOA] [MNaph]) are identified as the optimal solvents from computer-aided IL design (CAILD) method and reported experimental data, respectively. The dynamic simulation results for the fermentation process show that, the productivity of IL-based in situ (fed-batch) process and in situ (batch) process is around 2.7 and 1.8fold that of base case. Additionally, the IL-based in situ (fed-batch) process and in situ (batch) process also have significant energy savings (79.6% and 77.6%) when compared to the base case.  相似文献   

12.
灵芝作为一种白腐真菌,同时也是珍稀的食药用真菌,富含多种生物活性成分。液体发酵技术生产周期短、效率高、产量大、品质稳定,是开发利用灵芝资源的重要途径。近年来,灵芝属真菌菌丝体液体发酵技术的开发与应用取得了较大进展。本文对灵芝属真菌液体发酵产物的主要活性成分及其药用效果、液体发酵工艺优化和发酵产物的应用进行综述,并对本领域的未来进行展望。  相似文献   

13.
Extractive fermentation (or in situ product removal (ISPR)) is an operational method used to combat product inhibition in fermentations. To achieve ISPR, different separation techniques, modes of operation and physical reactor configurations have been proposed. However, the relative paucity of industrial application necessitates continued investigation into reactor systems. This article outlines a bioreactor designed to facilitate in situ product extraction and recovery, through adapting the reaction volume to include a settler and solvent extraction and recycle section. This semipartition bioreactor is proposed as a new mode of operation for continuous liquid‐liquid extractive fermentation. The design is demonstrated as a modified bench‐top fermentation vessel, initially analysed in terms of fluid dynamic studies, in a model two‐liquid phase system. A continuous abiotic simulation of lactic acid (LA) fermentation is then demonstrated. The results show that mixing in the main reaction vessel is unaffected by the inserted settling zone, and that the size of the settling tube effects the maximum volumetric removal rate. In these tests the largest settling tube gave a potential continuous volumetric removal rate of 7.63 ml/min; sufficiently large to allow for continuous product extraction even in a highly productive fermentation. To demonstrate the applicability of the developed reactor, an abiotic simulation of a LA fermentation was performed. LA was added to reactor continuously at a rate of 33ml/h, while continuous in situ extraction removed the LA using 15% trioctylamine in oleyl alcohol. The reactor showed stable LA concentration of 1 g/L, with the balance of the LA successfully extracted and recovered using back extraction. This study demonstrates a potentially useful physical configuration for continuous in situ extraction.  相似文献   

14.

Background

Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol.

Results

KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g?·?L-1?·?h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture.

Conclusions

Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency.  相似文献   

15.
Acetone–butanol–ethanol (ABE) fermentation with a hyper‐butanol producing Clostridium acetobutylicum JB200 was studied for its potential to produce a high titer of butanol that can be readily recovered with gas stripping. In batch fermentation without gas stripping, a final butanol concentration of 19.1 g/L was produced from 86.4 g/L glucose consumed in 78 h, and butanol productivity and yield were 0.24 g/L h and 0.21 g/g, respectively. In contrast, when gas stripping was applied intermittently in fed‐batch fermentation, 172 g/L ABE (113.3 g/L butanol, 49.2 g/L acetone, 9.7 g/L ethanol) were produced from 474.9 g/L glucose in six feeding cycles over 326 h. The overall productivity and yield were 0.53 g/L h and 0.36 g/g for ABE and 0.35 g/L h and 0.24 g/g for butanol, respectively. The higher productivity was attributed to the reduced butanol concentration in the fermentation broth by gas stripping that alleviated butanol inhibition, whereas the increased butanol yield could be attributed to the reduced acids accumulation as most acids produced in acidogenesis were reassimilated by cells for ABE production. The intermittent gas stripping produced a highly concentrated condensate containing 195.9 g/L ABE or 150.5 g/L butanol that far exceeded butanol solubility in water. After liquid–liquid demixing or phase separation, a final product containing ~610 g/L butanol, ~40 g/L acetone, ~10 g/L ethanol, and no acids was obtained. Compared to conventional ABE fermentation, the fed‐batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n‐butanol production from glucose. Biotechnol. Bioeng. 2012; 109: 2746–2756. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The cellulolytic Clostridium cellulovorans has been engineered to produce n-butanol from low-value lignocellulosic biomass by consolidated bioprocessing (CBP). The objective of this study was to establish a robust cellulosic biobutanol production process using a metabolically engineered C. cellulovorans. First, various methods for the pretreatment of four different corn-based residues, including corn cob, corn husk, corn fiber, and corn bran, were investigated. The results showed that better cell growth and a higher concentration of n-butanol were produced from corn cob that was pretreated with sodium hydroxide. Second, the effects of different carbon sources (glucose, cellulose and corn cob), basal media and culture pH values on butanol production were evaluated in the fermentations performed in 2-L bioreactors to identify the optimal CBP conditions. Finally, the engineered C. cellulovorans produced butanol with final concentration >3 g/L, yield >0.14 g/g, and selectivity >3 g/g from pretreated corn cob at pH 6.5 in CBP. This study showed that the fermentation process engineering of C. cellulovorans enabled a high butanol production directly from agricultural residues.  相似文献   

17.
Butanol has been acknowledged as an advanced biofuel, but its production through acetone–butanol–ethanol (ABE) fermentation by clostridia is still not economically competitive, due to low butanol yield and titer. In this article, update progress in butanol production is reviewed. Low price and sustainable feedstocks such as lignocellulosic residues and dedicated energy crops are needed for butanol production at large scale to save feedstock cost, but processes are more complicated, compared to those established for ABE fermentation from sugar- and starch-based feedstocks. While rational designs targeting individual genes, enzymes or pathways are effective for improving butanol yield, global and systems strategies are more reasonable for engineering strains with stress tolerance controlled by multigenes. Compared to solvent-producing clostridia, engineering heterologous species such as Escherichia coli and Saccharomyces cerevisiae with butanol pathway might be a solution for eliminating the formation of major byproducts acetone and ethanol so that butanol yield can be improved significantly. Although batch fermentation has been practiced for butanol production in industry, continuous operation is more productive for large scale production of butanol as a biofuel, but a single chemostat bioreactor cannot achieve this goal for the biphasic ABE fermentation, and tanks-in-series systems should be optimized for alternative feedstocks and new strains. Moreover, energy saving is limited for the distillation system, even total solvents in the fermentation broth are increased significantly, since solvents are distilled to ~ 40% by the beer stripper, and more than 95% water is removed with the stillage without phase change, even with conventional distillation systems, needless to say that advanced chemical engineering technologies can distil solvents up to ~ 90% with the beer stripper, and the multistage pressure columns can well balance energy consumption for solvent fraction. Indeed, an increase in butanol titer with ABE fermentation can significantly save energy consumption for medium sterilization and stillage treatment, since concentrated medium can be used, and consequently total mass flow with production systems can be reduced. As for various in situ butanol removal technologies, their energy efficiency, capital investment and contamination risk to the fermentation process need to be evaluated carefully.  相似文献   

18.
Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45?g/L, 3.70?g/L/h, 655.83?g/L, 378.5?g/m2/h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19?g/L, 0.61?g/L/h, 28.03?g/L, 58.56?g/m2/h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.  相似文献   

19.
In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone–butanol–ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes. The development of consolidated processing (i.e., single-pot fermentation) can dramatically reduce lignocellulose fermentation costs and promote its industrial application. Here, strategies for developing microbial strains and consortia that feature both efficient (hemi)cellulose depolymerization and butanol production will be depicted, that is, rational metabolic engineering of native (hemi)cellulolytic or native butanol-producing or other suitable microorganisms; protoplast fusion of (hemi)cellulolytic and butanol-producing strains; and co-culture of (hemi)cellulolytic and butanol-producing microbes. Irrespective of the fermentation feedstock, biobutanol production is inherently limited by the severe toxicity of this solvent that challenges process economic viability. Hence, an overview of strategies for developing butanol hypertolerant strains will be provided.  相似文献   

20.
Sustainable vehicle fuel is indispensable in future due to worldwide depletion of fossil fuel reserve, oil price fluctuation and environmental degradation. Microbial production of butanol from renewable biomass could be one of the possible options. Renewable biomass such as corn stover has no food deficiency issues and is also cheaper in most of the agricultural based countries. Thus it can effectively solve the existing issue of substrate cost. In the last 30 years, a few of Clostridium strains have been successfully implemented for biobutanol fermentation. However, the commercial production is hindered due to their poor tolerance to butanol and inhibitors. Metabolic engineering of Clostridia strains is essential to solve above problems and ultimately enhance the solvent production. An effective and efficient pretreatment of raw material as well as optimization of fermentation condition could be another option. Furthermore, biological approaches may be useful to optimize both the host and pathways to maximize butanol production. In this context, this paper reviews the existing Clostridium strains and their ability to produce butanol particularly from corn stover. This study also highlights possible fermentation pathways and biological approaches that may be useful to optimize fermentation pathways. Moreover, challenges and future perspectives are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号