首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic and calorimetric melting studies of 28 DNA hairpins were performed. These hairpins form by intramolecular folding of 16 base self‐complementary DNA oligomer sequences. Sequence design dictated that the hairpin structures have a six base pair duplex linked by a four base loop and that the first five base pairs in the stem are the same in every molecule. Only loop sequence and identity of the duplex base pair closing the loop vary for the set of hairpins. For these DNA samples, melting studies were carried out to investigate effects of the variables on hairpin stability. Stability of the 28 oligomers was ascertained from their temperature‐induced melting transitions in buffered 115 mM Na+ solvent, monitored by ultraviolet absorbance and differential scanning calorimetry (DSC). Experiments revealed the melting temperatures of these molecules range from 32.4 to 60.5°C and are concentration independent over strand concentrations of 0.5 to 260 μM; thus, as expected for hairpins, the melting transitions are apparently unimolecular. Model independent thermodynamic transition parameters, ΔHcal, ΔScal, and ΔGcal, were determined from DSC measurements. Model dependent transition parameters, ΔHvH, ΔSvH, and ΔGvH were estimated from a van't Hoff (two‐state) analysis of optical melting transitions. Results of these studies reveal a significant sequence dependence to DNA hairpin stability. Thermodynamic parameters evaluated by either procedure reveal the transition enthalpy, ΔHcalHvH) can differ by as much as 20 kcal/mol depending on sequence. Similarly, values of the transition entropy ΔScalSvH) can differ by as much as 60 cal/Kmol (eu) for different molecules. Differences in free energies ΔGcalGvH) are as large as 4 kcal/mol for hairpins with different sequences. Comparisons between the model independent calorimetric values and the thermodynamic parameters evaluated assuming a two‐state model reveal that 10 of the 28 hairpins display non‐two‐state melting behavior. The database of sequence‐dependent melting free energies obtained for the hairpins was employed to extract a set of n‐n (nearest‐neighbor) sequence dependent loop parameters that were able to reproduce the input data within error (with only two exceptions). Surprisingly, this suggests that the thermodynamic stability of the DNA hairpins can in large part be reasonably represented in terms of sums of appropriate nearest‐neighbor loop sequence parameters. © 1999 John Wiley & Sons, Inc. Biopoly 50: 425–442, 1999  相似文献   

2.
Shu Z  Bevilacqua PC 《Biochemistry》1999,38(46):15369-15379
Hairpins are the most common elements of RNA secondary structure, playing important roles in RNA tertiary architecture and forming protein binding sites.Triloops are common in a variety of naturally occurring RNA hairpins, but little is known about their thermodynamic stability. Reported here are the sequences and thermodynamic parameters for a variety of stable and unstable triloop hairpins. Temperature gradient gel electrophoresis (TGGE) can be used to separate a simple RNA combinatorial library based on thermal stability [Bevilacqua, J. M., and Bevilacqua, P. C. (1998) Biochemistry 45, 15877-15884]. Here we introduce the application of TGGE to separating and analyzing a complex RNA combinatorial library based on thermal stability, using an RNA triloop library. Several rounds of in vitro selection of an RNA triloop library were carried out using TGGE, and preferences for exceptionally stable and unstable closing base pairs and loop sequences were identified. For stable hairpins, the most common closing base pair is CG, and U-rich loop sequences are preferred. Closing base pairs of GC and UA result in moderately stable hairpins when combined with a stable loop sequence. For unstable hairpins, the most common closing base pairs are AU and UG, and U-rich loop sequences are no longer preferred. In general, the contributions of the closing base pair and loop sequence to overall hairpin stability appear to be additive. Thermodynamic parameters for individual hairpins determined by UV melting are generally consistent with outcomes from selection experiments, with hairpins containing a CG closing base pair having a DeltaDeltaG degrees (37) 2.1-2.5 kcal/mol more favorable than hairpins with other closing base pairs. Sequences and thermodynamic rules for triloop hairpins should aid in RNA structure prediction and determination of whether naturally occurring triloop hairpins are thermodynamically stable.  相似文献   

3.
Abstract

Preparation of the nucleoside analogues 1 and incorporation of 1, B = T, in deoxyribooligonucleotides by the phosphoramidite method is described. A two-step deprotection procedure was developed to reduce cleavage of the modified allylic unit. The binding properties of the modified oligonucleotides towards complementary DNA and RNA has been evaluated by Tm measurements showing a ΔTm of ?2 to ?6.5°C per modification. An oligonucleotide with two modifications at the 3′-end showed considerable resistance towards cleavage by a 3′-exonuclease. No antiviral activity against HIV-1 or HSV-1 was found for 1, B = G or T, or for any of the trihydroxy derivatives 5.  相似文献   

4.
Abstract

We examined the effects of 1–(2-deoxy -2-fluoro-β-D-arabinofuranosyl)-thymine (or FMAU, a potent antiviral nucleoside) on the stability of duplex and triplexes. When compared the stability of the self-complementary 5′-A5T5 duplex with 5′-A5X5 (X = FMAU), duplex containing FMAU has much higher melting temperature (Tm). 5′-A6T5T3X3T5F3X3 and T3X3T5A6T5F3X3 form the parallel and antiparallel triplexes T3X3: A6:X3X3, respectively. The former exhibited the typical T:A:T triplex behavior with only one melting temperature at 70 °C and 45 °c in 1.0 M and 0.2 M NaCl solution, respectively, whereas the latter has two Tm values at 56 °C and 28 °C in 1.0 M solution. FMAU clearly stabilize the triplex structure as A6T22 which forms the parallel triplex T6:A6:T6 has also only one Tm at 54 °C and 37 °C in high and iow salt concentration solutions, respectively. A 31mer 5′-TCCTCCTTTTTTAGGAGGATTTTTTGGTGGT and 5′-TCCTCCTTTTTTAGGAGGATTTTTTX'X'TX'X'T (X' = 2′-deoxy-5-methylcytidine) were prepared to study their triplex forming potential. The former was found to have a week interaction of the Watson-Crick duplex with the mismatched third-strand at all pH. The latter formed a stable triplex at lower pH consistent with required protonation on the 5-methylcytosine base. For these studies we developed a simple PC desktop spreadsheet program to calculate the first derivative profile of the melting curve data.

This paper is dedicated to Prof. Jacques H. van Boom on the occasion of his 60th birthday.  相似文献   

5.
Nakano M  Moody EM  Liang J  Bevilacqua PC 《Biochemistry》2002,41(48):14281-14292
Hairpins play important roles in the function of DNA, forming cruciforms and affecting processes such as replication and recombination. Temperature gradient gel electrophoresis (TGGE) and in vitro selection have been used to isolate thermodynamically stable DNA hairpins from a six-nucleotide random library. The TGGE-selection process was optimized such that known stable DNA tetraloops were recovered, and the selection appears to be exhaustive. In the selection, four families of exceptionally stable DNA loops were identified: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). (Lowercase denotes the closing base pair; N = A, C, G, or T; and B = C, G, or T.) It appears that the known stable d(cGNAg) triloop motif can be embedded into a tetraloop, with the extra nucleotide inserted into either the middle of the loop, d(cGNNAg), or at the 3'-end of the loop, d(cGNABg). For d(cGNNAg) and d(cGNABg), a CG closing base pair was strongly preferred over a GC, with DeltaDeltaG degrees (37) approximately 2 kcal/mol. Members of the two families, d(cCNNGg) and d(gCNNGc), are similar in stability. The loop sequences and closing base pairs identified for exceptionally stable DNA tetraloops show many similarities to those known for exceptionally stable RNA tetraloops. These data provide an expanded set of thermodynamic rules for the formation of tetraloops in DNA.  相似文献   

6.
We prepared hairpins that differ in the connectivity of phosphodiester linkages in the loop (RNA vs 2′, 5′-RNA). We find that the stability of the extra stable RNA hairpin 5′-rGGAC(UUCG)GUCC-3′ is the same as that observed for the hairpin containing a 2′,5′RNA loop, i.e. 5′-rGGAC(UUCG)GUCC-3′ (where UUCG = U2′p5′U2′p5′ C2′p5′G2′p5′). Also significant is the finding that when the stem is duplex DNA, duplex 2′,5′-RNA, or DNA:2′,5′-RNA, hairpins with the UUCG loop are more stable than those with UUCG loop.  相似文献   

7.
CD spectra and melting curves were collected for a 28 base-pair DNA fragment in the form of a DNA dumbbell (linked on both ends by T4 single-strand loops) and the same DNA sequence in the linear form (without end loops). The central 16 base pairs (bp) of the 28-bp duplex region is the poly(pu) sequence: 5′-AGGAAGGAGGAAAGAG-3′. Mixtures of the dumbbell and linear DNAs with the 16-base single-strand sequence 5′-TCCTTCCTCCTTTCTC-3′ were also prepared and studied. At 22°C, CD measurements of the mixtures in 950 mM NaCl, 10 mM sodium acetate, 1 mM EDTA, pH 5.5, at a duplex concentration of 1.8 μM, provided evidence for triplex formation. Spectroscopic features of the triplexes formed with either a dumbbell or linear substrate were quite similar. Melting curves of the duplex molecules alone and in mixtures with the third strand were collected as a function of duplex concentration from 0.16 to 2.15 μM. Melting curves of the dumbbell alone and mixtures with the third strand were entirely independent of DNA concentration. In contrast, melting curves of the linear duplex alone or mixed with the third strand were concentration dependent. At identical duplex concentrations, the dumbbell alone melts ~20°C higher than the linear duplex. The curve of the linear duplex displayed a significant pretransition probably due to end fraying. On melting curves of mixtures of the dumbbell or linear duplex with the third strand, a low temperature transition with much lower relative hyperchromicity change (~ 5%) was observed. This transition was attributed to the melting of a new molecular species, e.g., the triplex formed between the duplex and single-strand DNA molecules. In the case of the dumbbell/single-strand mixture, these melting transitions of the triplex and the dumbbell were entirely resolvable. In contrast, the melting transitions of the linear duplex and the triplex overlapped, thereby preventing their clear distinction. To analyze the data, a three-state equilibrium model is presented. The analysis utilizes differences in relative absorbance vs temperature curves of dumbbells (or linear molecules) alone and in mixtures with the third strand. From the model analysis a straightforward derivation of fT(T), the fraction of triplex as a function of temperature, was obtained. Analysis of fT vs temperature curves, in effect melting curves of the triplexes, provided evaluation of thermodynamic parameters of the melting transition. For the triplex formed with the dumbbell substrate, the total transition enthalpy is ΔHT = 118.4 ± 12.8 kcal/mol (7.4 ± 0.8 kcal/mol per triplet unit) and the total transition entropy is ΔST = 344 ± 36.8 cal/K · mol (eu) (21.5 ± 2.3 eu per triple unit). The transition curves of the triplex formed with the linear duplex substrate displayed two distinct regions. A broad pretransition region from fT = 0 to 0.55 and a higher, sharper transition above fT = 0.55. The transition parameters derived from the lower temperature region of the curve are ΔHT = 44.8 ± 9.6 kcal/mol and ΔST = 112 ± 33.6 eu (or ΔH′ = 2.8 ± 0.6 kcal/mol and ΔS′ = 7.0 ± 2.1 eu per triplet). These values are probably too small to correspond to actual melting of the triplex but instead likely reveal effects of end fraying of the duplex substrate on triplex stability. Transition parameters of the upper transition are ΔHT = 128.0 ± 2.3 kcal/mol and ΔST = 379.2 ± 6.4 eu (ΔH′ = 8.0 ± 0.2 kcal/mol and ΔS′ = 23.7 ± 0.4 eu per triplet) in good agreement (within experimental error) with the transition parameters of the triplex formed with the dumbbell substrate. Supposing this upper transition reflects actual dissociation of the third strand from the linear duplex substrate this triplex is comparable in thermodynamic stability to the triplex formed with a dumbbell substrate. Even so, the biphasic melting character of the linear triplex obscures the whole analysis, casting doubt on its absolute reliability. Apparently triplexes formed with a dumbbell substrate offer technical advantages over triplexes formed from linear or hairpin duplex substrates for studies of DNA triplex stability. © 1993 John Wiley & Sons, Inc.  相似文献   

8.

We have investigated the effect of switching ribose to deoxyribose at the closing base-pair of an extra-stable RNA hairpin. Specifically, we studied the sequence 5′-GGAC(UUCG)GUCC, a dodecanucleotide that folds into a well-characterized, “extra stable” RNA hairpin structure. Recently, we showed that hairpins containing a 2′,5′-linked (UUCG) loop instead of the native 3′,5′-linked loop also exhibit extra-stability (Hannoush and Damha, J. Am. Chem. Soc., 2001, 123, 12368–12374). In this article, we show that the ribose units located at the loop-closing positions (i.e., rC 4 and rG 9 ) contribute significantly to the stabilization of RNA hairpins, particularly those containing the 3′,5′-UUCG loop. Interestingly, the requirement of rC4 and rG9 is more relaxed for DNA hairpins containing the 2′,5′-UUCG loop and, in fact, they may be replaced altogether (ribose → deoxyribose) without affecting stability. The results broaden our understanding of the behavior of highly stable (UUCG) hairpin loops and how they respond to structural perturbation of the loop-closing base pairs.  相似文献   

9.
The influence of one DNA region on the stability of an adjoining region (telestability) was examined. Melting curves of three block DNA's, d(C15A15)·d(T15G15), d(C20A15)·d(T15G20), and d(C20A10)·d(T10G20) were analyzed in terms of the nearest neighbor Ising model. Comparisons of predicted and experimental curves were made in 0.01 M and 0.1 M sodium ion solutions. The nearest neighbor formalism was also employed to analyze block DNA transition in the presence of actinomycin, a G·C specific molecule. The results show that nearest neighbor base-pair interaction cannot predict the melting curves of the block DNA's. Adjustments in theoretical parameters to account for phosphate repulsion assuming a B conformation throughout the DNA's do not alter this conclusion. Changes in the theoretical parameters, which provide good overall agreement, are consistent with a substantial stabilization of the A·T region nearest the G·C block. The melting temperature T A·T for the average A·T pari in d(C20A10)·d(T10G20), with 10 A·T pairs, appears to be 4°C greater than TA·T for d(C15A15)·d(T15G15) and d(C20A15)·d(T15G20), both with 15 A·T pairs. Actinomycin bound to the G·C end effectively stabilizes the A·T end by 9°C. These results indicate a long-range contribution to the interactions governing DNA stability. A possible mechanism for these interactions will be discussed.  相似文献   

10.
Many factors that change the temperature position and interval of the DNA helix–coil transition often also alter the shape of multi-peak differential melting curves (DMCs). For DNAs with a multi-peak DMC, there is no agreement on the most useful definition for the melting temperature, Tm, and temperature melting width, ΔT, of the entire DNA transition. Changes in Tm and ΔT can reflect unstable variation of the shape of the DMC as well as alterations in DNA thermal stability and heterogeneity. Here, experiments and computer modeling for DNA multi-peak DMCs varying under different factors allowed testing of several methods of defining Tm and ΔT. Indeed, some of the methods give unreasonable “jagged” Tm and ΔT dependences on varying relative concentration of DNA chemical modifications (rb), [Na+], and GC content. At the same time, Tm determined as the helix–coil transition average temperature, and ΔT, which is proportional to the average absolute temperature deviation from this temperature, are suitable to characterize multi-peak DMCs. They give smoothly varying theoretical and experimental dependences of Tm and ΔT on rb, [Na+], and GC content. For multi-peak DMCs, Tm value determined in this way is the closest to the thermodynamic melting temperature (the helix–coil transition enthalpy/entropy ratio).  相似文献   

11.
The Poland–Fixman–Freire formalism was adapted for modeling of calorimetric DNA melting profiles, and applied to plasmid pBR 322 and long random sequences. We studied the influence of the difference (HGC?HAT) between the helix‐coil transition enthalpies of AT and GC base pairs on the calorimetric melting profile and on normalized calorimetric melting profile. A strong alteration of DNA calorimetrical profile with HGC?HAT was demonstrated. In contrast, there is a relatively slight change in the normalized profiles and in corresponding ordinary (optical) normalized differential melting curves (DMCs). For fixed HGC?HAT, the average relative deviation (S) between DMC and normalized calorimetric profile, and the difference between their melting temperatures (Tcal?Tm) are weakly dependent on peculiarities of the multipeak fine structure of DMCs. At the same time, both the deviation S and difference (Tcal?Tm) enlarge with the temperature melting range of the helix‐coil transition. It is shown that the local deviation between DMC and normalized calorimetric profile increases in regions of narrow peaks distant from the melting temperature.  相似文献   

12.
Abstract

Three chimeric dimer synthons (oeg_tNHT, oeg_upNHT and oeg_uhNHT) containing thymine (t), 5-(l-propynyl)-uracil (up) and 5-(1-hexyn-1-yl)-uracil (uh) PNA units with N-(2-hydroxyethyl)glycine (oeg) backbone were synthesized in solution and incorporated into T20 oligonucleotide analogues, using standard P-amidite chemistry. Insertion of dimer blocks led to destabilization of duplexes with dA20 target. The smallest T m drops were found for chimeras containing oeg_upNHT dimers. Incorporation of the chimeric synthons into the 3′-end of T20 brought about growing resistance to 3′-exonucleolytic (SV PDE) cleavage in the order of oeg_tNHT < oeg_upNHT < oeg_uhNHT. Due to different endonuclease activities of 3′- and 5′-exonucleases applied, placing of five consecutive dimers at the 5′-terminus resulted in a relatively smaller, but also side-chain dependent, stabilization towards the hydrolysis by 5′-exonuclease (BS PDE). Neither exonucleases (SV and BS PDE) nor an endonuclease (Nuclease P1) could hydrolyse the unnatural phosphodiester bond linking the 3′-OH of thymidine to the terminal OH of N-(2-hydroxyethyl)glycine PNA backbone.  相似文献   

13.
Molecular dynamics (MD) computer simulations are utilized to better understand the dynamics of small (N = 5) endohedral Ne@C60 aggregates. Multiple runs at various temperatures are used to increase the reliability of our statistics. The aggregate holds together until somewhere between T = 1150 and 1200 K, where it dissociates, showing no intermediate sign of melting or fullerene disintegration. When the temperature is increased to around T = 4000 K, the encapsulated neon atoms begin to leave the aggregate, with the fullerene molecules still remaining intact. At temperatures near T = 4400 K, thermal disintegration of the fullerenes preempts the aggregate dissociation. Above this temperature neon atoms are more quickly released and the fullerenes form a larger connected structure, with bonding taking place in atom pairs from different original fullerene molecules. Escape constants and half lives are calculated for the temperature range 4000 K ≤ T ≤ 5000 K. The agreements and disagreements of results of this work with experiments suggest that classical MD simulations are useful in describing fullerene systems at low temperatures and near disintegration, but require development of new techniques before it is possible to accurately model windowing at temperatures below T = 3000 K.  相似文献   

14.
Abstract

We synthesized and analyzed DNA hairpin molecules with methylphosphonate linkages of defined stereochemistry in the loop region. Dinucleotide building blocks ApA and TpT (p indicating methylphosphonate linkage with either Rp or Sp configuration) were synthesized, separated into the diastereomers, and incorporated at three positions of the tetraloops 5′-CGCAAAAGCG-3′ and 5′-CGCTTTTGCG-3′. The oligonucleotides were analyzed for their melting behavior. With a Tm of 67.5°C the molecule 5′-CGCAAApAGCG-3′ with a Sp configurated methylphosphonate is distinctly more stable than the Rp configurated one (Tm = 60.5 °C) and the unmodified oligonucleotide (Tm = 64.5 °C). In contrast to double helical DNA where the substitution of a phosphorodiester by a Sp configurated methylphosphonate results in a lower Tm, in DNA hairpin the introduction of Sp and Rp methylphosphonates at specific positions can lead to a stabilization of the structure.  相似文献   

15.
The preparation and melting of a 16 base-pair duplex DNA linked on both ends by C12H24 (dodecyl) chains is described. Absorbance vs temperature curves (optical melting curves) were measured for the dodecyl-linked molecule and the same duplex molecule linked on the ends instead by T4 loops. Optical melting curves of both molecules were measured in 25, 55, and 85 mM Na+ and revealed, regardless of [Na +], the duplex linked by dodecyl loops is more stable by at least 6°C than the same duplex linked by T4 loops. Experimental curves in each salt environment were analyzed in terms of the two-state and multistate theoretical models. In the two-state, or van't Hoff analysis, the melting transition is assumed to occur in an all-or-none manner. Thus, the only possible states accessible to the molecule throughout the melting transition are the completely intact duplex and the completely melted duplex or minicircle. In the multistate analysis no assumptions regarding the melting transition are required and the statistical occurrence of every possible partially melted state of the duplex is explicitly considered. Results of the analysis revealed the melting transitions of both the dodecyl-linked molecule and the dumbbell with T4 end loops are essentially two state in 25 and 55 mM Na+. In contrast, significant deviations from two-state behavior were observed in 85 m MNa+. From our previously published melting data of DNA dumbbells with Tn end loops where n = 2, 3, 4, 6, 8, 10, 14 [T. M. Paner, M. Amaratunga, and A. S. Benight, (1992) Biopolymers, Vol. 32, pp. 881–892] and the dumbbell with T4 end loops of this study, a plot of d(Tm)/d ln [Na+] was constructed. Extrapolation of this data to n = 1 intersects with the value of d (Tm)/d ln [Na+] obtained for the alkyl-linked dumbbell, suggesting the salt-dependent stability of the alkyl-linked molecule behaves as though the duplex of this molecule were linked by end loops comprised of a single T residue. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Sharon S. Yu  Hsueh Jei Li 《Biopolymers》1973,12(12):2777-2788
Protamine–DNA complexes prepared by the method of direct and slow mixing in 2.5 × 10?4M EDTA, pH 8.0, have been studied by thermal denaturation and circular dichroism. The complexes show biphasic melting with Tm at about 50 °C corresponding to the melting of free DNA regions and Tm′ at about 92 °C corresponding to the melting of protamine-bound regions. In protamine-bound regions there are 1.38 amino acid residues per nucleotide, indicating a nearly completely charge neutralization. Tm is increased but Tm′ is not when the ionic strength of the buffer is raised. This also supports a full charge neutralization in protamine-bound regions. The circular dichroism of the complexes can be decomposed into two components, Δε0 of free DNA regions in B-form conformation and Δεb of protamine-bound regions in a characteristic conformation neither that of B- nor C-form but somewhere between them.  相似文献   

17.
Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, Tm, and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (Tm(F/T)?Tm(εA/T)?Tm(Hx/T)?Tm(A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme–substrate complex is not the bottleneck controlling the catalytic activity of AAG.  相似文献   

18.
The melting transition of DNA in alkaline CsCl can be followed in the analytical ultracentrifuge. Equilibrium partially denatured states can be observed. These partially denatured DNA bands have bandwidths of up to several times those of native DNA. Less stable molecules melt early and are found at heavier densities in the melting region. An idealized ultracentrifuge melting transition is described. The melting transition of singly nicked PM-2 DNA resembles the idealized curve. The DNA profile is a Gaussian band at all points in the melt. DNA's from mouse, D. Melanogaster, M. lysodeikticus, T4, and T7 also show equilibrium bands at partially denatured densities, some of which are highly asymmetric. Simple sequence satellite DNA shows an all-or-none transition with no equilibrium bands at partially denatured densities. The temperature at which a DNA denatures is an increasing function of the (G + C) content of the DNA. The Tm does not show a molecular-weight dependence in the range 1.2 × 106–1.5 × 107 daltons (single strand) for mouse, M. lysodeikticus, or T4 DNA. The mouse DNA partially denatured bands do not change shape as a function of molecular weight. The T4 DNA intermediate band develops a late-melting tail at low molecular weight. M. lysodeikticus DNA bands at partially denatured densities become broader as the molecular weight is decreased. Mouse DNA is resolved into six Gaussian components at each point in the melting transition.  相似文献   

19.
H J Li  B Brand  A Rotter  C Chang  M Weiskopf 《Biopolymers》1974,13(8):1681-1697
Thermal denaturation of direct-mixed and reconstituted polylysine–DNA complexes in 2.5 × 10?4 M EDTA, pH 8.0 and various concentrations of NaCl has been studied. For both complexes, increasing ionic strength of the solution raises Tm, the melting temperature of free base pairs. The linear dependence of Tm on log Na+ indicates that the concept of electrostatic shielding on phosphate lattice of an infinitely long pure DNA by Na+ can be applied to short free DNA segments in a nucleoprotein. For a direct-mixed polylysine–DNA complex, the melting temperature of bound base pairs Tm′ remains constant at various ionic strengths. On the other hand, the Tm′ in a reconstituted polylysine–DNA complex is shifted to lower temperature at higher ionic strength. This phenomenon occurs for reconstituted complex with long polylysine of one thousand residues or short polylysine of one hundred residues. It is shown that such a decrease of Tm′ is not due to a reduction of coupling melting between free and bound regions in a complex when the ionic strength is raised. It is also not due to intermolecular or intramolecular change from a reconstituted to a direct-mixed complex. It is suggested that this phenomenon is due to structural change on polylysine-bound regions by ionic strength. It is suggested further that Na+ may replace water molecules and bind polylysine-bound regions in a reconstituted complex. Such a dehydration effect destabilizes these regions and lowers Tm′. This explanation is supported by circular dichroism (CD) results.  相似文献   

20.
The aim of this study was to investigate the variations in plasma triiodothyronine (T3) and thyroxine (T4) with the advancement of age and to determine their circadian patterns in prepubertal and pubertal Murrah buffaloes. The variations in plasma T3 and T4 with the advancement of age were observed from day 1 to 24 months of age. Significant higher levels of T3 and T4 were observed after birth and a gradual decrease in their concentrations occurred until 15 days of age. The mean plasma T3 and T4 ranged between 1.26–3.79 and 60.7–166 ng/ml, respectively, during 1–30 days of age. During 1–24 months of age, the variations in plasma T3 did not differ (p > 0.05) with the advancement of age, whereas significant (p < 0.0001) changes were observed in plasma T4. The circadian patterns of T3 and T4 were evaluated in prepubertal Murrah buffaloes (n = 8) aged between 14 and 16 months. The mean plasma T3 and T4 ranged between 1.04–1.85 and 43.0–76.1 ng/ml, respectively. Significant (p > 0.0001) changes in the secretory pattern of T3 were observed, whereas the secretory pattern of T4 did not differ significantly (p > 0.05). In addition, the circadian patterns of T3 and T4 in pubertal buffaloes (n = 4) aged between 28 and 30 months were observed and compared to that of prepubertal group (n = 4). The prepubertal group showed significant (p < 0.001) higher plasma T3 concentrations over 24 h than the pubertal group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号