首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-site APP cleaving enzyme1 (BACE1) catalyzes the rate determining step in the generation of Aβ peptide and is widely considered as a potential therapeutic drug target for Alzheimer’s disease (AD). Active site of BACE1 contains catalytic aspartic (Asp) dyad and flap. Asp dyad cleaves the substrate amyloid precursor protein with the help of flap. Currently, there are no marketed drugs available against BACE1 and existing inhibitors are mostly pseudopeptide or synthetic derivatives. There is a need to search for a potent inhibitor with natural scaffold interacting with flap and Asp dyad. This study screens the natural database InterBioScreen, followed by three-dimensional (3D) QSAR pharmacophore modeling, mapping, in silico ADME/T predictions to find the potential BACE1 inhibitors. Further, molecular dynamics of selected inhibitors were performed to observe the dynamic structure of protein after ligand binding. All conformations and the residues of binding region were stable but the flap adopted a closed conformation after binding with the ligand. Bond oligosaccharide interacted with the flap as well as catalytic dyad via hydrogen bond throughout the simulation. This led to stabilize the flap in closed conformation and restricted the entry of substrate. Carbohydrates have been earlier used in the treatment of AD because of their low toxicity, high efficiency, good biocompatibility, and easy permeability through the blood–brain barrier. Our finding will be helpful in identify the potential leads to design novel BACE1 inhibitors for AD therapy.  相似文献   

2.
Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer’s disease therapeutics.  相似文献   

3.
Phipps KR  Li H 《Proteins》2007,67(1):121-127
The crystal packing surfaces comprising protein-RNA interactions were analyzed for 50 RNA-protein crystal structures in the Protein Data Bank database. Protein-RNA crystal contacts, which represent nonspecific protein-RNA interfaces, were investigated for their amino acid propensities, hydrogen bond patterns, and backbone and side chain interactions. When compared to biologically relevant interactions, the protein-RNA crystal contacts exhibit similarities as well as differences with respect to the principles of protein-RNA interactions. Similar to what was observed at cognate protein-RNA interfaces, positively charged amino acids have high propensities at noncognate protein-RNA interfaces and preferentially form hydrogen bonds with RNA phosphate groups. In contrast, nonpolar residues are less frequently associated with noncognate interactions. These results highlight the important roles of both electrostatic and hydrogen bonding interactions, facilitated by positively charged amino acids, in mediating both specific and nonspecific protein-RNA interactions.  相似文献   

4.
Abstract

Casein kinase 2 (CK2) is extremely preserved and universally uttered serine/threonine kinase, vital for cellular feasibility. The present study aimed to analyse the binding strength of CK2 ligands specifically in the hinge region, as it is aware that most of the existing drugs are targeted to bind the hinge of the corresponding protein. The analysis will give a clear picture about the role of hinge region with ligand, which will be useful for scientist community in drug designing. To predict the binding strength of CK2 ligands, the role of halogen bond, hydrogen bond interaction at the hinge region was depicted in detail through interaction energy calculations at M062Z/def2-QZVP level of theory. Highest occupied molecular orbital (HOMO) map plotted for CK2 ligands gives a clear pictorial representation of orbitals, which induce for interaction. Ligand properties discussed in detail through Lipinski’s five rules predict that almost all the ligands satisfy the rule, except 3KXG, which violates Lipinski’s two rules, i.e. molecular mass exceeds 500?Da, i.e. 512.61?Da, and Log P value is high of 5.09. The natural bond orbital analysis deliberates that the hydrogen/halogen bonds figuring out within the complexes are observed to have moderate stabilization energy, but those hydrogen/halogen bonds that exist with close contacts have high stabilization energy. Overall, this computational work will give an understandable depiction for modelling anticancer ligands along the hinge region in CK2 protein; also, it will give a new path for the choice of side chains on the ligand.

Communicated by Ramaswamy H. Sarma  相似文献   

5.
A series of amides bearing a variety of amidine head groups was investigated as BACE1 inhibitors with respect to inhibitory activity in a BACE1 enzyme as well as a cell-based assay. Determination of their basicity as well as their properties as substrates of P-glycoprotein revealed that a 2-amino-1,3-oxazine head group would be a suitable starting point for further development of brain penetrating compounds for potential Alzheimer’s disease treatment.  相似文献   

6.
Pierce AC  Sandretto KL  Bemis GW 《Proteins》2002,49(4):567-576
Although the hydrogen bond is known to be an important mediator of intermolecular interactions, there has yet to be an analysis of the role of CH...O hydrogen bonds in protein-ligand complexes. In this work, we present evidence for such nonstandard hydrogen bonds from a survey of aromatic ligands in 184 kinase crystal structures and 358 high-resolution structures from the Protein Data Bank. CH groups adjacent to the positively charged nitrogen of nicotinamide exhibit geometric preferences strongly suggestive of hydrogen bonding interactions, as do heterocyclic CH groups in kinase ligands, while other aromatic CH groups do not exhibit these characteristics. Ab initio calculations reveal a considerable range of CH...O hydrogen bonding potentials among different aromatic ring systems, with nicotinamide and heterocycles preferred in kinase inhibitors showing particularly favorable interactions. These results provide compelling evidence for the existence of CH...O hydrogen bonds in protein-ligand interactions, as well as information on the relative strength of various aromatic CH donors. Such knowledge will be of considerable value in protein modeling, ligand design, and structure-activity analysis.  相似文献   

7.
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level.  相似文献   

8.
A statistical analysis of strong and weak hydrogen bonds in the minor groove of DNA was carried out for a set of 70 drug-DNA complexes. The terms ‘strong’ and ‘weak’ pertain to the inherent strengths and weakness of the donor and acceptor fragments rather than to any energy considerations. The dataset was extracted from the protein data bank (PDB). The analysis was performed with an in-house software, hydrogen bond analysis tool (HBAT). In addition to strong hydrogen bonds such as O—H⋯O and N—H⋯O, the ubiquitous presence of weak hydrogen bonds such as C—H⋯O is implicated in molecular recognition. On an average, there are 1.4 weak hydrogen bonds for every strong hydrogen bond. For both categories of interaction, the N(3) of purine and the O(2) of pyrimidine are favoured acceptors. Donor multifurcation is common with the donors generally present in the drug molecules, and shared by hydrogen bond acceptors in the minor groove. Bifurcation and trifurcation are most commonly observed. The metrics for strong hydrogen bonds are consistent with established trends. The geometries are variable for weak hydrogen bonds. A database of recognition geometries for 26 literature amidinium-based inhibitors of Human African Trypanosomes (HAT) was generated with a docking study using seven inhibitors which occur in published crystal structures included in the list of 70 complexes mentioned above, and 19 inhibitors for which the drug-DNA complex crystal structures are unknown. The virtual geometries so generated correlate well with published activities for these 26 inhibitors, justifying our assumption that strong and weak hydrogen bonds are optimized in the active site.  相似文献   

9.
In order to understand the mechanisms of ligand binding and interaction between two commercial drugs (ligands), zanamivir and oseltamivir and H5N1 Influenza Virus Neuraminidase subtype N1, a three-dimensional model of N1-ligand (GenBank accession no. AAS654617) was initially generated by homology modeling using the 13 high-resolution X-ray structures of neuraminidase N2 and N9 as the template. With the aid of the molecular mechanics and molecular dynamics methods, the final implicit solvent refined model was obtained. It was, then, assessed by PROCHECK, PROSA and VERIFY3D. With this model, a flexible docking study was performed. The results show strong hydrogen bond interactions between the glycerol side chains of zanamivir and Arg29 of the N1. Common hydrogen bonds between the carboxyl groups and Arg279 were found for both drugs. It was also found that the Glu30, Asp62, Arg63, Arg204, Trp310, Tyr313, Glu336, Ile338, Trp348, Ala349 were observed to facilitate the enzyme-ligand non-bonding interactions as they are located within the radius of 5 Å from all atoms of both drugs. Charge distribution was evaluated using the semi-empirical AM1 method. The results show that the total net charges of the –NH side chain of zanamivir is less negative than that of oseltamivir. This is in contrast to what is observed for the amide and alkyl (ether/glycerol) side chains. In comparison of the binding free energies between the X-ray N2-ligand and N9-ligand complexes, N1-ligand binding is found to be less potent than N2 and N9 subtypes, while N2-ligand and N9-ligand are roughly comparable. In addition, it is interesting to observe that the binding free energies for all three subtypes of the zanamivir complexes are lower than those of oseltamivir.  相似文献   

10.
Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.  相似文献   

11.
The beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) has long been considered a conventional target for Alzheimer’s disease (AD). Unfortunately, AD clinical trials of most BACE1 inhibitors were discontinued due to ineffective cognitive improvement or safety challenges. Recent studies investigating the involvement of BACE1 in metabolic, vascular, and immune functions have indicated a role in aging, diabetes, hypertension, and cancer. These novel BACE1 functions have helped to identify new ‘druggable’ targets for BACE1 against aging comorbidities. In this review, we discuss BACE1 regulation during aging, and then provide recent insights into its enzymatic and nonenzymatic involvement in aging and age-related diseases. Our study not only proposes the perspective of BACE1’s actions in various systems, but also provides new directions for using BACE1 inhibitors and modulators to delay aging and to treat age-related diseases.  相似文献   

12.
The pathway of ligand dissociation and how binding sites respond to force are not well understood for any macromolecule. Force effects on biological receptors have been studied through simulation or force spectroscopy, but not by high resolution structural experiments. To investigate this challenge, we took advantage of the extreme stability of the streptavidin–biotin interaction, a paradigm for understanding non-covalent binding as well as a ubiquitous research tool. We synthesized a series of biotin-conjugates having an unchanged strong-binding biotin moiety, along with pincer-like arms designed to clash with the protein surface: ‘Love–Hate ligands’. The Love–Hate ligands contained various 2,6-di-ortho aryl groups, installed using Suzuki coupling as the last synthetic step, making the steric repulsion highly modular. We determined binding affinity, as well as solving 1.1–1.6 Å resolution crystal structures of streptavidin bound to Love–Hate ligands. Striking distortion of streptavidin’s binding contacts was found for these complexes. Hydrogen bonds to biotin’s ureido and thiophene rings were preserved for all the ligands, but biotin’s valeryl tail was distorted from the classic conformation. Streptavidin’s L3/4 loop, normally forming multiple energetically-important hydrogen bonds to biotin, was forced away by clashes with Love–Hate ligands, but Ser45 from L3/4 could adapt to hydrogen-bond to a different part of the ligand. This approach of preparing conflicted ligands represents a direct way to visualize strained biological interactions and test protein plasticity.  相似文献   

13.
14.
Previously reported pentapeptidic BACE1 inhibitors, designed using a substrate-based approach, were used as lead compounds for the further design of non-peptidic BACE1 inhibitors. Although these peptidic and non-peptidic inhibitors, with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic, exhibited potent BACE1 inhibitory activities, their molecular-sizes appeared a little too big (molecular weight of >600daltons) for developing practical anti-Alzheimer's disease drugs. To develop lower weight BACE1 inhibitors, a series of tripeptidic BACE1 inhibitors were devised using a design approach based on the conformation of a virtual inhibitor bound to the BACE1 active site, also called 'in-silico conformational structure-based design'. Although these tripeptidic BACE1 inhibitors contained some natural amino acid residues, they are expected to be useful as lead compounds for developing the next generation BACE1 inhibitors, due to their low molecular size and unique structural features compared with previously reported inhibitors.  相似文献   

15.
Beta site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors hold great potential as disease modifying anti-Alzheimer’s drugs. This digest provides an overview of the amidine containing class of BACE1 inhibitors, of which multiple examples are now progressing through clinical trials. The various structural modifications highlight the struggle to combine potency with the optimal properties for a brain penetrant BACE1 inhibitor, and illustrate the crowded competitive landscape. This overview concludes with a summary of potential issues including substrate and target selectivity and a synopsis of the status of the current and past clinical assets.  相似文献   

16.
Guided by structure-based design, we synthesized two novel series of potent inhibitors of BACE1 and generated extensive SAR around both the prime and non-prime side binding pockets. The key feature of both series is a cyclic amine motif specifically crafted to achieve interactions with both the flap and with the S2' pocket.  相似文献   

17.
Beta-amyloid precursor protein cleavage enzyme1 (BACE1) and beta-amyloid precursor protein cleavage enzyme2 (BACE2), members of aspartyl protease family, are close homologs and have high similarity in their protein crystal structures. However, their enzymatic properties are different, which leads to different clinical outcomes. In this study, we performed sequence analysis and all-atom molecular dynamic (MD) simulations for both enzymes in their ligand-free states in order to compare their dynamical flap behaviors. This is to enhance our understanding of the relationship between sequence, structure and the dynamics of this protein family. Sequence analysis shows that in BACE1 and BACE2, most of the ligand-binding sites are conserved, indicative of their enzymatic property as aspartyl protease members. The other conserved residues are more or less unsystematically localized throughout the structure. Herein, we proposed and applied different combined parameters to define the asymmetric flap motion; the distance, d1, between the flap tip and the flexible region; the dihedral angle, φ, to account for the twisting motion and the TriCα angle, θ2 and θ1. All four combined parameters were found to appropriately define the observed “twisting” motion during the flaps different conformational states. Additional analysis of the parameters indicated that the flaps can exist in an ensemble of conformations, i.e. closed, semi-open and open conformations for both systems. However, the behavior of the flap tips during simulations is different between BACE1 and BACE2. The BACE1 active site cavity is more spacious as compared to that of BACE2. The analysis of 10S loop and 113S loop showed a similar trend to that of flaps, with the BACE1 loops being more flexible and less stable than those of BACE2. We believe that the results, methods and perspectives highlighted in this report would assist researchers in the discovery of BACE inhibitors as potential Alzheimer’s disease therapies.  相似文献   

18.
The polypyrimidine tract-binding protein (PTB) is an important regulator of alternative splicing. PTB-regulated splicing of α-tropomyosin is enhanced by Raver1, a protein with four PTB-Raver1 interacting motifs (PRIs) that bind to the helical face of the second RNA recognition motif (RRM2) in PTB. We present the crystal structures of RRM2 in complex with PRI3 and PRI4 from Raver1, which--along with structure-based mutagenesis--reveal the molecular basis of their differential binding. High-affinity binding by Raver1 PRI3 involves shape-matched apolar contacts complemented by specific hydrogen bonds, a new variant of an established mode of peptide-RRM interaction. Our results refine the sequence of the PRI motif and place important structural constraints on functional models of PTB-Raver1 interactions. Our analysis indicates that the observed Raver1-PTB interaction is a general mode of binding that applies to Raver1 complexes with PTB paralogues such as nPTB and to complexes of Raver2 with PTB.  相似文献   

19.
Recently, we reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. Because these inhibitors contained some natural amino acids, we would need to improve their enzymatic stability in vivo and permeability across the blood–brain barrier, so that they become practically useful. Subsequently, non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold, 2,6-pyridenedicarboxylic, chelidamic or chelidonic moiety, at the P2 position were reported. These inhibitors were designed based on the conformer of docked inhibitor in BACE1. In this study, we discuss the role and significance of interactions between Arg235 of BACE1 and its inhibitor in BACE1 inhibitory mechanism. Moreover, we designed more potent small-sized BACE1 inhibitors with a 2,6-pyridinedicarboxylic scaffold at the P2 position, that were optimized for the interactions with Arg235 of BACE1.  相似文献   

20.
Panigrahi SK 《Amino acids》2008,34(4):617-633
Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 A radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N-H...O, O-H...O, N-H...N and weak bonds C-H...O, C-H...N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N-H...O and C-H...O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase sub-families. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each sub-family. The synthon locations are conserved across sub-families due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号