首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anaplastic lymphoma kinase is a tyrosine kinase receptor protein belonging to insulin receptor superfamily. Gene fusions in anaplastic lymphoma kinase are associated with non-small cell lung cancer development. Hence, they are of immense importance in targeted therapies. Thus, for the treatment of non-small cell lung cancer, effective anaplastic lymphoma kinase inhibitors are of great significance. Therefore, our objective is to find hit compounds that could have better inhibitory activity than the existing anaplastic lymphoma kinase inhibitors. Keeping this in mind, in the present study pharmacophore based virtual screening was performed to identify possible anaplastic lymphoma kinase inhibitors. Initially, a five-point common pharmacophore hypothesis was generated based on twelve anaplastic lymphoma kinase inhibitors using PHASE module of Schrödinger. Subsequently, common pharmacophore hypothesis-based screening was conducted against in-trials subset of ZINC database and a total of 1000 hits were identified. The molecules obtained were further screened by three stages of docking using GLIDE software. The docking results reveal that six hit molecules showed higher glide score in comparison with the reference molecules. Finally, pharmacokinetic properties of the hit molecules were also analysed using QikProp programme. The results indicate that molecules namely videx, dexecadotril, chloramphenicol, naficillin were found to have good pharmacokinetic properties and human oral absorption. Moreover, videx, naficillin and chloramphenicol were found to have significant inhibitory activity for mutant (F1174L) anaplastic lymphoma kinase. It was also found that videx exhibited crucial interactions with the Met1199 residue of the native and mutant anaplastic lymphoma kinase protein. Furthermore, PASS algorithm predicted anti-neoplastic activity for all the four molecules. Thus these hits are found to be promising leads for anaplastic lymphoma kinase inhibitors. We believe that this study will be useful for the discovery and designing of more potent anaplastic lymphoma kinase inhibitors in the near future.  相似文献   

3.
HIV-1 protease is an obligatory enzyme in the replication process of the HIV virus. The abundance of structural information on HIV-1PR has made the enzyme an attractive target for computer-aided drug design strategies. The daunting ability of the virus to rapidly generate resistant mutants suggests that there is an ongoing need for new HIV-1PR inhibitors with better efficacy profiles and reduced toxicity. In the present investigation, molecular modeling studies were performed on a series of 54 cyclic urea analogs with symmetric P2/P2′ substituents. The binding modes of these inhibitors were determined by docking. The docking results also provided a reliable conformational superimposition scheme for the 3D-QSAR studies. To gain insight into the steric, electrostatic, hydrophobic and hydrogen-bonding properties of these molecules and their influence on the inhibitory activity, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed. Two different alignment schemes viz. receptor-based and atom-fit alignment, were used in this study to build the QSAR models. The derived 3D-QSAR models were found to be robust with statistically significant r 2 and r 2 pred values and have led to the identification of regions important for steric, hydrophobic and electronic interactions. The predictive ability of the models was assessed on a set of molecules that were not included in the training set. Superimposition of the 3D-contour maps generated from these models onto the active site of enzyme provided additional insight into the structural requirements of these inhibitors. The CoMFA and CoMSIA models were used to design some new inhibitors with improved binding affinity. Pharmacokinetic and toxicity predictions were also carried out for these molecules to gauge their ADME and safety profile. The computational results may open up new avenues for synthesis of potent HIV-1 protease inhibitors.  相似文献   

4.
This paper is an attempt to design 4-anilinoquinazoline compounds having promising anticancer activities against epidermal growth factor (EGFR) kinase inhibition, using virtual combinatorial library approach. Partial least squares method has been applied for the development of a quantitative structure–activity relationship (QSAR) model based on training and test set approaches. The partial least squares model showed some interesting results in terms of internal and external predictability against EGFR kinase inhibition for such type of anilinoquinazoline derivatives. In virtual screening study, out of 4860 compounds in chemical library, 158 compounds were screened and finally, 10 compounds were selected as promising EGFR kinase inhibitors based on their predicted activities from the QSAR model. These derivatives were subjected to molecular docking study to investigate the mode of binding with the EGFR kinase, and the two compounds (ID 3639 and 3399) showing similar type of docking score and binding patterns with that of the existing drug molecules like erlotinib were finally reported.  相似文献   

5.
A series of new 6-substituted-N-[3-{2-(substituted phenyl)-ethenyl} quinoxaline-2(1H)-ylidene]-1,3-benzothiazole-2-amine (4af) were designed and synthesized by condensing 2-amino-benzothiazole-6-sulfonic acid amide (1) with chalcones of quinoxaline-2-one (3af) in a hope to obtain promising and a new class of diuretic agents. Structures of all the newly synthesized compounds were characterized by spectral data and elemental analysis. The pharmacological studies in experimental rats indicates that compound 4c possesses excellent in vivo diuretic activity of 1.13 and appears to be a better diuretic agent than the reference drugs, acetazolamide (1.0) and urea (0.88). Insight of the binding mode of the synthesized compounds (ligand) into the binding sites of carbonic anhydrase enzyme (PDF code: 4KUV) was provided by docking studies, performed with the help of Maestro 9.0 docking software. Further pharmacokinetic and toxicological studies are needed to confirm the safety of compound 4c which emerged as a lead diuretic compound.  相似文献   

6.
Abstract

Models validation in QSAR, pharmacophore, docking and others can ensure the accuracy and reliability of future predictions in design and selection of molecules with biological activity. In this study, pyriproxyfen was used as a pivot/template to search the database of the Maybridge Database for potential inhibitors of the enzymes acetylcholinesterase and juvenile hormone as well. The initial virtual screening based on the 3D shape resulted in 2000 molecules with Tanimoto index ranging from 0.58 to 0.88. A new reclassification was performed on the overlapping of positive and negative charges, which resulted in 100 molecules with Tanimoto's electrostatic score ranging from 0.627 to 0.87. Using parameters related to absorption, distribution, metabolism and excretion and the pivot molecule, the molecules selected in the previous stage were evaluated regarding these criteria, and 21 were then selected. The pharmacokinetic and toxicological properties were considered and for 12 molecules, the DEREK software not fired any alert of toxicity, which were thus considered satisfactory for prediction of biological activity using the Web server PASS. In the molecular docking with insect acetylcholinesterase, the Maybridge3_002654 molecule had binding affinity of ?11.1?kcal/mol, whereas in human acetylcholinesterase, the Maybridge4_001571molecule show in silico affinity of ?10.2?kcal/mol, and in the juvenile hormone, the molecule MCULE-8839595892 show in silico affinity value of ?11.6?kcal/mol. Subsequent long-trajectory molecular dynamics studies indicated considerable stability of the novel molecules compared to the controls.

Abbreviations QSAR quantitative structure–activity relationships

PASS prediction of activity spectra for substances

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl‐ and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50=141.60±3.39 μm ) and hyuganin C (IC50=38.86±1.69 μm ) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50=46.58±0.91 μm ) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.  相似文献   

8.
The phosphatidylinositol 3-kinase α (PI3Kα) was genetically validated as a promising therapeutic target for developing novel anticancer drugs. In order to explore the structure-activity correlation of benzothiazole series as inhibitors of PI3Kα, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) were performed on 61 promising molecules to build 3D-QSAR models based on both the ligand- and receptor-based methods. The best CoMFA and CoMSIA models had a cross-validated coefficient r(cv)(2) of 0.618 and 0.621, predicted correlation coefficient r(pred) (2) of 0.812 and 0.83, respectively, proving their high correlative and predictive abilities on both the training and test sets. In addition, docking analysis and molecular dynamics simulation (MD) were also applied to elucidate the probable binding modes of these inhibitors at the ATP binding pocket. Based on the contour maps and MD results, some key structural factors responsible for the activity of this series of compounds were revealed as follows: (1) Ring-A has a strong preference for bulky hydrophobic or aromatic groups; (2) Electron-withdrawing groups at the para position of ring-B and hydrophilic substituents in ring-B region may benefit the potency; (3) A polar substituent like -NHSO(2)- between ring-A and ring-B can enhance the activity of the drug by providing hydrogen bonding interaction with the protein target. The satisfactory results obtained from this work strongly suggest that the developed 3D-QSAR models and the obtained PI3Kα inhibitor binding structures are reasonable for the prediction of the activity of new inhibitors and be helpful in future PI3Kα inhibitor design.  相似文献   

9.
Carbonic anhydrase inhibitors (CAI) are valuable molecules as they have several therapeutic applications, including anti-glaucoma activity. In this study, inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I, II and VI with a series of bisphenol and bromophenol derivatives was investigated. Molecular docking studies of a set of such inhibitors within CA I and II were also performed. K(I) values of the molecules 2-9 were in the range of 10.025-892.109 μM for hCA I, 1.437-59.107 μM for hCA II and 11.143-919.182 μM for hCA VI, respectively. Reported inhibitory activities of molecules 2-9 will assist in better understanding of structure-activity relationship studies of CAI.  相似文献   

10.
The discovery of clinically relevant inhibitors against MurF enzyme has proven to be a challenging task. In order to get further insight into the structural features required for the MurF inhibitory activity, we performed pharmacophore and atom-based three-dimensional quantitative structure–activity relationship studies for novel thiophene-3-carbonitriles based MurF inhibitors. The five-feature pharmacophore model was generated using 48 inhibitors having IC50 values ranging from 0.18 to 663?μm. The best-fitted model showed a higher coefficient of determination (R2?=?0.978), cross-validation coefficient (Q2?=?0.8835) and Pearson coefficient (0.9406) at four component partial least-squares factor. The model was validated with external data set and enrichment study. The effectiveness of the docking protocol was validated by docking the co-crystallized ligand into the catalytic pocket of MurF enzyme. Further, binding free energy calculated by the molecular mechanics generalized Born surface area approach showed that van der Waals and non-polar solvation energy terms are the main contributors to ligand binding in the active site of MurF enzyme. A 10-ns molecular dynamic simulation was performed to confirm the stability of the 3ZM6-ligand complex. Four new molecules are also designed as potent MurF inhibitors. These results provide insights regarding the development of novel MurF inhibitors with better binding affinity.  相似文献   

11.
Abstract

Benzothiazole derivatives represent an important class of therapeutic chemical agents and are widely used for interesting biological activities and therapeutic functions including anticancer, antitumor and antimicrobial. In this study, we have performed similarity/substructure-based search of eMolecule database to find out promising benzothiazole derivatives as EGFR tyrosine kinase inhibitors. Several screening criteria that included molecular docking, pharmacokinetics and synthetic accessibility were used on initially derived about 7000 molecules consisting of benzothiazole as major component. Finally, four molecules were found to be promising EGFR tyrosine kinase inhibitors. The best docked pose of each molecule was considered for binding interactions followed by molecular dynamics (MD) and binding energy calculation. Molecular docking clearly showed the final proposed derivatives potential to form a number of binding interactions. MD simulation trajectories undoubtedly indicated that the EGFR protein becomes stable when proposed derivatives bind to the receptor cavity. Strong binding affinity was found for all molecules toward the EGFR which was substantiated by the binding energy calculation using the MM-PBSA approach. Therefore, proposed benzothiazole derivatives may be promising EGFR tyrosine kinase inhibitors for potential application as cancer therapy.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
13.
Smallpox was one of the most devastating diseases in the human history and still represents a serious menace today due to its potential use by bioterrorists. Considering this threat and the non-existence of effective chemotherapy, we propose the enzyme thymidylate kinase from Variola virus (VarTMPK) as a potential target to the drug design against smallpox. We first built a homology model for VarTMPK and performed molecular docking studies on it in order to investigate the interactions with inhibitors of Vaccinia virus TMPK (VacTMPK). Subsequently, molecular dynamics (MD) simulations of these compounds inside VarTMPK and human TMPK (HssTMPK) were carried out in order to select the most promising and selective compounds as leads for the design of potential VarTMPK inhibitors. Results of the docking and MD simulations corroborated to each other, suggesting selectivity towards VarTMPK and, also, a good correlation with the experimental data.  相似文献   

14.
Human β‐galactoside α‐2,6‐sialyltransferase I (hST6Gal I) catalyses the synthesis of sialylated glycoconjugates involved in cell–cell interactions. Overexpression of hST6Gal I is observed in many different types of cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase (ST) inhibitors have been developed based on the natural donor, cytidine 5′‐monophosphate N‐acetylneuraminic acid (CMP‐Neu5Ac). Of these, analogues that are structurally similar to the transition state exhibit the highest inhibitory activity. In order to design inhibitors that are readily accessible synthetically and with favourable pharmacokinetic properties, an investigation of the replacement of the charged phosphodiester‐linker, present in many ST inhibitors, with a potential neutral isostere such as a carbamate or a 1,2,3‐triazole has been undertaken. To investigate this, molecular docking and molecular dynamics simulations were performed. These simulations provided an insight into the binding mode of previously reported phosphodiester‐linked ST inhibitors and demonstrated that targeting the proposed sialyl acceptor site is a viable option for producing selective inhibitors. The potential for a carbamate‐ or triazole‐linker as an isosteric replacement for the phosphodiester in transition‐state analogue ST inhibitors was established using molecular docking. Molecular dynamics simulations of carbamate‐ and phosphodiester‐linked compounds revealed that both classes exhibit consistent interactions with hST6Gal I. Overall, the results obtained from this study provide a rationale for synthetic and biological evaluation of triazole‐ and carbamate‐linked transition‐state analogue ST inhibitors as potential new antimetastatic agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (MurG) is located in plasma membrane which plays a crucial role for peptidoglycan biosynthesis in Gram-negative bacteria. Recently, this protein is considered as an important and unique drug target in Acinetobacter baumannii since it plays a key role during the synthesis of peptidoglycan as well as which is not found in Homo sapiens. In this study, initially we performed comparative protein modeling approach to predict the three-dimensional model of MurG based on crystal structure of UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (PDB ID: 1F0K) from E.coli K12. MurG model has two important functional domains located in N and C- terminus which are separated by a deep cleft. Active site residues are located between two domains and they are Gly20, Arg170, Gly200, Ser201, Gln227, Phe254, Leu275, Thr276, and Glu279 which play essential role for the function of MurG. In order to inhibit the function of MurG, we employed the High Throughput Virtual Screening (HTVS) and docking techniques to identify the promising molecules which will further subjected into screening for computing their drug like and pharmacokinetic properties. From the HTVS, we identified 5279 molecules, among these, 12 were passed the drug-like and pharmacokinetic screening analysis. Based on the interaction analysis in terms of binding affinity, inhibition constant and intermolecular interactions, we selected four molecules for further MD simulation to understand the structural stability of protein-ligand complexes. All the analysis of MD simulation suggested that ZINC09186673 and ZINC09956120 are identified as most promising putative inhibitors for MurG protein in A. baumannii.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
As the enzyme nucleoside hydrolase (NH) is widely found in nature but has not yet been detected in mammals, it is considered an ideal target in the development of chemotherapy against parasitic diseases and bacterial infections like anthrax. Considering the risk that this biological warfare agent represents nowadays, the search for new drugs and new molecular targets in the development of chemotherapy against anthrax is imperative. On this basis, we performed docking studies of six known NH inhibitors at the active site of NH from Bacillus anthracis (BaNH). Subsequently, molecular dynamics (MD) simulations of these compounds inside BaNH were carried out in order to complement the docking studies and select the most promising compounds as leads for the design of potential BaNH inhibitors. Most of the docking and MD results obtained agreed well with each other and showed good correlation with experimental data.  相似文献   

17.
Lan  Ping  Chen  Wan-Na  Sun  Ping-Hua  Chen  Wei-Min 《Journal of molecular modeling》2011,17(5):1191-1205
The Aurora kinases have been regarded as attractive targets for the development of new anticancer agents. Recently a series of azaindole derivatives with Aurora B inhibitory activities were reported. To explore the relationship between the structures of substituted azaindole derivatives and their inhibition of Aurora B, 3D-QSAR and molecular docking studies were performed on a dataset of 41 compounds. 3D-QSAR, including CoMFA and CoMSIA, were applied to identify the key structures impacting their inhibitory potencies. The CoMSIA model showed better results than CoMFA, with r 2 cv value of 0.575 and r 2 value of 0.987. 3D contour maps generated from CoMFA and CoMSIA along with the docking binding structures provided enough information about the structural requirements for better activity. Based on the structure-activity relationship revealed by the present study, we have designed a set of novel Aurora B inhibitors that showed excellent potencies in the developed models. Thus, our results allowed us to design new derivatives with desired activities.  相似文献   

18.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on a series of substituted 1,4-dihydroindeno[1,2-c]pyrazoles inhibitors, using molecular docking and comparative molecular field analysis (CoMFA). The docking results from GOLD 3.0.1 provide a reliable conformational alignment scheme for the 3D-QSAR model. Based on the docking conformations and alignments, highly predictive CoMFA model was built with cross-validated q 2 value of 0.534 and non-cross-validated partial least-squares analysis with the optimum components of six showed a conventional r 2 value of 0.911. The predictive ability of this model was validated by the testing set with a conventional r 2 value of 0.812. Based on the docking and CoMFA, we have identified some key features of the 1,4-dihydroindeno[1,2-c]pyrazoles derivatives that are responsible for checkpoint kinase 1 inhibitory activity. The analyses may be used to design more potent 1,4-dihydroindeno[1,2-c]pyrazoles derivatives and predict their activity prior to synthesis.  相似文献   

19.
Cytidine Deaminase (CD) is an evolutionarily conserved enzyme that participates in the pyrimidine salvage pathway recycling cytidine and deoxycytidine into uridine and deoxyuridine, respectively. Here, our goal is to apply computational techniques in the pursuit of potential inhibitors of Mycobacterium tuberculosis CD (MtCDA) enzyme activity. Molecular docking simulation was applied to find the possible hit compounds. Molecular dynamics simulations were also carried out to investigate the physically relevant motions involved in the protein-ligand recognition process, aiming at providing estimates for free energy of binding. The proposed approach was capable of identifying a potential inhibitor, which was experimentally confirmed by IC50 evaluation. Our findings open up the possibility to extend this protocol to different databases in order to find new potential inhibitors for promising targets based on a rational drug design process.  相似文献   

20.
Modeling studies were performed on HCV NS5B polymerase in an effort to design new inhibitors. The binding models of five different scaffold inhibitors were investigated and compared by using molecular dynamics simulations, free energy calculation and decomposition. Our results show Tyr448 plays the most critical role in the binding of most inhibitors. In addition, favorable contributions of residues Pro197, Arg200, Cys366, Met414 and Tyr448 in a deep hydrophobic pocket prove to be important for the selectivity of inhibitors. Furthermore, an optimized docking protocol was presented based on cross-docking the five inhibitors in the palm binding site of this enzyme using the Autodock program. This protocol was used later to virtually screen NCI and Maybridge diversity set libraries. The binding site was profiled via the statistics and analysis of the hydrogen bond networks formed between the receptor and the top-ranked diversity set compounds. Based on our detailed binding site analysis two useful rules were proposed to guide the selection of promising hits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号