首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Tumor-associated cell surface antigens and tumor-associated vascular markers have been used as a target for cancer intervention strategies. However, both types of targets have limitations due to accessibility, low and/or heterogeneous expression, and presence of tumor-associated serum antigen. It has been previously reported that a mitochondrial/cell surface protein, p32/gC1qR, is the receptor for a tumor-homing peptide, LyP-1, which specifically recognizes an epitope in tumor cells, tumor lymphatics, and tumor-associated macrophages/myeloid cells. Using antibody phage technology, we have generated an anti-p32 human monoclonal antibody (2.15). The 2.15 antibody, expressed in single-chain fragment variable and in trimerbody format, was then characterized in vivo using mice grafted subcutaneously with MDA-MB-231 human breast cancers cells, revealing a highly selective tumor uptake. The intratumoral distribution of the antibody was consistent with the expression pattern of p32 in the surface of some clusters of cells. These results demonstrate the potential of p32 for antibody-based tumor targeting strategies and the utility of the 2.15 antibody as targeting moiety for the selective delivery of imaging and therapeutic agents to tumors.  相似文献   

2.
Aplysiatoxin (ATX) is a naturally occurring tumor promoter isolated from a sea hare and cyanobacteria. ATX binds to, and activates, protein kinase C (PKC) isozymes and shows anti-proliferative activity against human cancer cell lines. Recently, ATX has attracted attention as a lead compound for the development of novel anticancer drugs. In order to predict the binding mode between ATX and protein kinase Cδ (PKCδ) C1B domain, we carried out molecular docking simulation, atomistic molecular dynamics simulation in phospholipid membrane environment, and structure–activity study on a simple acyclic analog of ATX. These studies provided the binding model where the carbonyl group at position 27, the hydroxyl group at position 30, and the phenolic hydroxyl group at position 20 of ATX were involved in intermolecular hydrogen bonding with the PKCδ C1B domain, which would be useful for the rational design of ATX derivatives as anticancer lead compounds.  相似文献   

3.
The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizable, efficient, covalent, orthogonal to diverse biochemical libraries, applicable under aqueous conditions, and stable in in vivo environments. To date, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or "click" reaction has shown considerable promise as a method for developing targeted nanomaterials in vitro. Here, we investigate the utility of "click" chemistry for the in vivo targeting of inorganic nanoparticles to tumors. We find that "click" chemistry allows cyclic LyP-1 targeting peptides to be specifically linked to azido-nanoparticles and to direct their binding to p32-expressing tumor cells in vitro. Moreover, "click" nanoparticles are able to stably circulate for hours in vivo following intravenous administration (>5 h circulation time), extravasate into tumors, and penetrate the tumor interstitium to specifically bind p32-expressing cells in tumors. In the future, in vivo use of "click" nanomaterials should expedite the progression from ligand discovery to in vivo evaluation and diversify approaches toward multifunctional nanoparticle development.  相似文献   

4.
Neuropilin-1 is considered as one of the key receptors responsible for signaling pathways involved in pathological angiogenesis necessary for tumor progression, therefore targeting of VEGF165 binding to NRP-1 could be a relevant strategy for antiangiogenic treatment. It was shown before that the VEGF165/NRP-1 interaction can be inhibited by short tetrapeptides with K/RXXR sequence.Here, we present a structure–activity relationship study of the systematic optimization of amino acid residues in positions 1–3 in the above tetrapeptides. All the 13 synthesized analogs possessed C-terminal arginine that is a necessary element for interaction with NRP-1. The obtained results of the inhibitory activity and modeling by molecular dynamics indicate that simultaneous interactions of the basic amino acid residues in position 1 and 4 (Arg) with Neuropilin-1 are crucial and their cooperation strongly affects the inhibitory activity. In addition, the binding strength is modulated by the flexibility of the peptide backbone (in the central part of the peptide), and the nature of the side chain of the amino acids at the second or third position. A dramatic decrease in the activity to the receptor is observed in flexible derivatives that are missing proline residues. The results described in this paper should prove useful for future studies aimed at establishing the best pharmacophore for inhibitors of VEGF165 binding to NRP-1.  相似文献   

5.
G-Quadruplex DNA ligands are promising novel anticancer agents with potentially fewer side effects and greater selectivity than standard anticancer drugs. However, the design of G-quadruplex ligands remains challenging since known chemical features increasing selectivity have often compromised drugability. Three C-11 diamino cryptolepine derivatives, with significant chemical differences between the side chains, low cytotoxicity to mammalian non-tumor cells (Vero cells) and drug-like properties, were selected for anticancer drug screening in the NCI Developmental Therapeutics Program. The three compounds showed good in vitro anticancer profiles with GI50 averages at sub-micromolar concentrations (0.32–0.78 μM), cytostatic effects (TGI) at micromolar concentrations (1.3–6.9 μM) and moderate cytotoxic effects to cancer cells (LC50) also at micromolar concentrations (4.7–33 μM), but only the compound with a linear alkylamine side chain (NSC748393) showed a good score in the in vivo anticancer Hollow Fiber assay. compare analysis of growth inhibition profile of NSC748393 suggested a multi-target mechanism. G-Quadruplex DNA binding affinity and selectivity studies by FRET-melting assays showed that NSC748392 and NSC478393, with aliphatic amine side chains, are good G-quadruplex ligands but not selective, whereas a C-11 aromatic side chain, as in NSC748394, increases selectivity although with decreasing binding affinity. Overall, NSC748393 can be considered a lead molecule for the design of effective but more selective anticancer drugs targeting telomeric G-quadruplexes.  相似文献   

6.
The melanocortin 1 receptor is a G-protein-coupled receptor that acts as a control point for control of the eumelanin/phaeomelanin ratio in mouse hair. MC1 receptor loss of function mutations lead to an increase in the ratio of phaeomelanin/eumelanin in many mammals resulting in yellow or red coat colours. We have previously shown that several common point mutations in the human MC1 receptor are overrepresented in North European redheads and in individuals with pale skin. In order to determine the functional significance of these changes we have carried out transfection and binding studies. Expression of the Val60Leu, Arg142His, Arg151Cys, Arg160Trp, and Asp294His receptors in COS 1 cells revealed that these receptors were unable to stimulate cAMP production as strongly as the wild type receptor in response to alpha-melanocyte-stimulating hormone stimulation. None of the mutant receptors displayed complete loss of alphaMSH binding, with only the Arg142His and Asp294His displaying a slight reduction in binding affinity.  相似文献   

7.
Residue 19 of the parathyroid hormone (PTH) has been shown to play an important role in both binding to and activation of the PTH receptor; specifically, Arg(19)-containing analogues have improved biological function over similar Glu(19) peptides [Shimizu et al. (2002) Biochemistry 41, 13224-13233]. Additionally the juxtamembrane portion of the receptor is involved in the different biological responses. Here, we determine the conformational preferences of PTH analogues to provide a structural basis for their biological actions. On the basis of circular dichroism results, the Arg(19) --> Glu(19) mutations within the context of both PTH(1-20) and PTH(1-34) analogues lead to increases in helix content, ranging from a 8-15% increase. High-resolution structures as determined by (1)H NMR and NOE-restrained molecular dynamics simulations clearly illustrate the difference between Arg(19) and Glu(19)-PTH(1-20), particularly with the extent and stability of the C-terminal helix. The Arg(19)-containing analogue has a well defined, stable alpha-helix from Ser(4)-Arg(19), while the Glu(19) analogue is less ordered at the C-terminus. On the basis of these observations, we propose that position 19 of PTH(1-20) must be alpha-helical for optimal interaction with the juxtamembrane portion of the receptor. This mode of binding extends the current view of PTH binding (indeed ligand binding for all class B GPCRs), which invokes a bihelical ligand with the C-terminus of the ligand interacting with the N-terminus of the receptor (responsible for binding) and the N-terminus of the ligand interacting with the seven-helical bundle (leading to receptor activation).  相似文献   

8.
9.
Attaching peptides to metallodrugs may result in improved biological properties of the complexes. The potential use of cell penetrating peptides (CPPs) as cell delivery vectors is attractive, since directed cell uptake of (metallo)drugs remains a major challenge in anticancer drug design. In this work, we report the synthesis of peptide conjugates of the organometallic Os(II) anticancer complex [(η(6)-biphenyl)Os(picolinate)Cl] with different arginine (Arg) chain lengths. Complexes conjugated to Arg(5) or Arg(8) at the 5-position of the picoline ring increase Os uptake into A2780 human ovarian cancer cells by ca. 2× and 10×, respectively, whereas a single Arg had no effect. Furthermore, a 15-fold increase in binding of Os to DNA, a potential target for these complexes, was observed for Arg(8) compared to the Arg(1) conjugate. The Arg(5) and Arg(8) conjugates exhibited fast kinetics of binding to calf thymus DNA and an ability to precipitate DNA at very low concentrations. In serum-free medium, the Arg(8) complex was cytotoxic (IC(50) 33 μM) and appears to be a rare example of a bioactive organometallic peptide conjugate. Experiments on CHO cells deficient in DNA repair suggested that unrepaired DNA damage contributes to the cytotoxicity of the Arg(5) and Arg(8) conjugates. These studies demonstrate the potential for use of cell- and nucleus-penetrating peptides in targeting organometallic arene anticancer complexes.  相似文献   

10.
11.
12.
In the course of our study on selective nonsteroidal mineralocorticoid receptor (MR) antagonists, a series of novel benzoxazine derivatives possessing an azole ring as the core scaffold was designed for the purpose of attenuating the partial agonistic activity of the previously reported dihydropyrrol-2-one derivatives. Screening of alternative azole rings identified 1,3-dimethyl pyrazole 6a as a lead compound with reduced partial agonistic activity. Subsequent replacement of the 1-methyl group of the pyrazole ring with larger lipophilic side chains or polar side chains targeting Arg817 and Gln776 increased MR binding activity while maintaining the agonistic response at the lower level. Among these compounds, 6-[1-(2,2-difluoro-3-hydroxypropyl)-5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-yl]-2H-1,4-benzoxazin-3(4H)-one (37a) showed highly potent in vitro activity, high selectivity versus other steroid hormone receptors, and good pharmacokinetic profiles. Oral administration of 37a in deoxycorticosterone acetate-salt hypertensive rats showed a significant blood pressure-lowering effect with no signs of antiandrogenic effects.  相似文献   

13.
Functionalized multi-walled carbon nanotubes have been extensively gained popularity in pancreatic cancer gene therapy. LyP-1, a peptide, has been proved to specifically bind pancreatic cancer cells. The potential therapeutic effect of LyP-1–conjugated functionalized multi-walled carbon nanotubes in treating pancreatic cancer is still unknown. In this study, LyP-1–conjugated functionalized multi-walled carbon nanotubes were successfully synthesized, characterized and showed satisfactory size distribution and zeta potential. Compared with functionalized multi-walled carbon nanotubes, cellular uptake of LyP-1–functionalized multi-walled carbon nanotubes was shown to be increased. Compound of LyP-1–functionalized multi-walled carbon nanotubes and MBD1siRNA showed superior gene transfection efficiency. Moreover, LyP-1-fMWNTs/MBD1siRNA complex could significantly decrease the viability and proliferation and promoted apoptosis of pancreatic cancer cells in vitro. Further xenograft assays revealed that the tumour burden in the nude mice injected with LyP-1–functionalized multi-walled carbon nanotubes/MBD1siRNA was significantly relieved. The study demonstrated that LyP-1–functionalized multi-walled carbon nanotubes/MBD1siRNA could be a promising candidate for tumour active targeting therapy in pancreatic cancer.  相似文献   

14.
The quinazoline scaffold is the main part of many marketed EGFR inhibitors. Resistance developments against those inhibitors enforced the search for novel structural lead compounds. We developed novel benzo-anellated 4-benzylamine pyrrolopyrimidines with varied substitution patterns at both the molecular scaffold and the attached residue in the 4-position. The structure-dependent affinities towards EGFR are discussed and first nanomolar derivatives have been identified. Docking studies were carried out for EGFR in order to explore the potential binding mode of the novel inhibitors. As the receptor tyrosine kinase VEGFR2 recently gained an increasing interest as an upregulated signaling kinase in many solid tumors and in tumor metastasis we determined the affinity of our compounds to inhibit VEGFR2. So we identified novel dually acting EGFR and VEGFR2 inhibitors for which first anticancer screening data are reported. Those data indicate a stronger antiproliferative effect of a VEGFR2 inhibition compared to the EGFR inhibition.  相似文献   

15.
In our ongoing program aimed at the design, synthesis, and biological evaluation of novel cannabinoid receptor ligands derived from olivetol and hexyl-resorcinol, we have designed a structural model for new derivatives on the basis of a previous study. Here we report the synthesis, binding, and molecular modeling studies of new potent compounds with high affinity toward CB(1) and CB(2) receptors. Compounds with amidic 'heads' with alkyloxy chains varying in length from 8 to 12 carbon atoms showed nanomolar affinity for both receptors, depending on the type of aromatic backbone. Two of the new compounds, although not very potent, exhibit selectivity for CB(1) receptors (CB(1)/CB(2)=0.07 and 0.08, respectively). Molecular modeling studies fitted this new class of cannabinoid ligands into a CB(1) receptor model, and the qualitative analysis of the results was in general agreement with the CB(1) affinity constants observed experimentally for these derivatives.  相似文献   

16.
Neuropilin-1 (NRP-1) is a receptor that plays an essential role in angiogenesis, vascular permeability, and nervous system development. Previous studies have shown that peptides with an N-terminal Arg, especially peptides with the four-residue consensus sequence R/K/XXR/K, bind to NRP-1 cell surfaces. Peptides containing such consensus sequences promote binding and internalization into cells, while blocking the C-terminal Arg (or Lys) prevents the internalization. In this study, we use molecular dynamics simulations to model the structural properties of the NRP-1 complex with a prototypic CendR peptide, RPAR. Our simulations show that RPAR binds NRP-1 through specific interactions of the RPAR C-terminus: three hydrogen bonds and a salt bridge anchor the ligand in the receptor pocket. The modeling results were used as the starting point for a systematic computational study of new RPAR analogues based on chemical modifications of their natural amino acids. Comparison of the structural properties of the new peptide-receptor complexes with the original organization suggests that some of the analogues can increase the binding affinity while reducing the natural sensitivity of RXXR to endogenous proteases.  相似文献   

17.
Since MDM2 is an inhibitor of the p53 tumor suppressor, disrupting the MDM2-p53 interaction is a promising approach for cancer therapy. Here, we used molecular dynamics simulations followed by free energy decomposition analysis to study conformational changes in MDM2 induced by three known spiro-oxindole inhibitors. Analysis of individual energy terms suggests that van der Waals and electrostatic interactions explain much of the binding affinities of these inhibitors. Binding free energies calculated for the three inhibitors using the molecular mechanics-generalized Born surface area model were consistent with experimental data, suggesting the validity of this approach. Based on this structure-function analysis, several novel spiro-oxindole derivatives were selected and evaluated for their ability to block the MDM2-p53 interaction in vitro. These results suggest that combining in silico and experimental techniques can provide insights into the structure-function relationships of MDM2 inhibitors and guide the rational design of anticancer drugs targeting the MDM2-p53 interaction.  相似文献   

18.
The 37/ 67-kDa human laminin receptor (LamR) is a cell surface receptor for laminin, prion protein, and a variety of viruses. Because of its wide range of ligands, LamR plays a role in numerous pathologies. LamR overexpression correlates with a highly invasive cell phenotype and increased metastatic ability, mediated by interactions between LamR and laminin. In addition, the specific targeting of LamR with small interfering RNAs, blocking antibodies, and Sindbis viral vectors confers anti-tumor effects. We adopted a structure-based approach to map a laminin binding site on human LamR by comparing the sequences and crystal structures of LamR and Archaeoglobus fulgidus S2p, a non-laminin-binding ortholog. Here, we identify a laminin binding site on LamR, comprising residues Phe32, Glu35, and Arg155, which are conserved among mammalian species. Mutation of these residues results in a significant loss of laminin binding. Further, recombinant wild-type LamR is able to act as a soluble decoy to inhibit cellular migration towards laminin. Mutation of this laminin binding site results in loss of migration inhibition, which demonstrates the physiological role of Phe32, Glu35, and Arg155 for laminin binding activity. Mapping of the LamR binding site should contribute to the development of therapeutics that inhibit LamR interactions with laminin and may aid in the prevention of tumor growth and metastasis.  相似文献   

19.
Bisphosphonates are widely used for treatment of osteoporosis. Recently, they have been reported to be effective anticancer agents. In this work, we designed some substituted phenyl (azanediyl) bis (methylene phosphonic acid) to be tested for their anticancer effect. Both molecular docking and dynamics studies were used to select the top ranked highly scored compounds. The selected hits showed potential in vitro anticancer effect against some cell lines. Biodistribution pattern and gamma scintigraphy were conducted to the most effective derivative (BMBP) after radiolabeling with 99mTc. Results of biodistribution and scintigraphic imaging of 99mTc-BMBP in tumor bearing mice showed a notable tumor affinity, and confirmed the targeting affinity of BMBP to the tumor tissues. As a conclusion, BMBP could act as potential anticancer agent and imaging probe.  相似文献   

20.
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression and invasiveness. This encouraged over the years the approach of MMP, and particularly MMP-2, targeting for anticancer treatment. Early generations of MMP inhibitors, based on aspecific zinc binding groups (ZBGs) assembled on (pseudo)peptide scaffolds, have been discontinued due to the clinical emergence of toxicity and further drawbacks, giving the way to inhibitors with alternative zinc-chelator moieties or not binding the catalytic zinc ion.In the present paper, we continue the search for new non-zinc binding MMP-2 inhibitors: exploiting previously identified compounds, a virtual screening (VS) campaign was carried out and led to the identification of a new class of ligands. The structure-activity relationship (SAR) of the benzimidazole scaffold was explored by synthesis of several analogues whose inhibition activity was tested with enzyme inhibition assays. By performing the molecular simplification approach, we disclosed different sets of single-digit micromolar inhibitors of MMP-2, with up to a ten-fold increase in inhibitory activity and ameliorated selectivity towards off-target MMP-8, compared to selected lead compound. Molecular dynamics calculations conducted on complexes of MMP-2 with docked privileged structures confirmed that analyzed inhibitors avoid targeting the zinc ion and dip inside the S1′ pocket. Present results provide a further enrichment of our insights for the design of novel MMP-2 selective inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号