首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
生物钟机制研究进展   总被引:6,自引:0,他引:6  
黄耀伟  于涟  周继勇 《生命科学》2000,12(1):10-13,29
由生物体内源性生物钟所产生的昼夜节律是近年来生命科学的研究热点之一。几种模型生物(蓝细菌、脉孢菌、拟南芥、果蝇、小鼠)的生物钟相关基因相继被克隆和鉴定,为理解昼夜节律的分子机制奠定了基础。振荡器蛋白对其编码基因的负反馈调控可能是不同生物的生物运作普遍机制,在此基础上,不同生物有不尽相同的调控方式;隐色素可能是高等生物的共同生物钟光受体。  相似文献   

2.
Glucocorticoids are considered to synchronize the rhythmicity of clock genes in peripheral tissues; however, the role of circadian variations of endogenous glucocorticoids is not well defined. In the present study, we examined whether peripheral circadian clocks were impaired by adrenalectomy. To achieve this, we tested the circadian rhythmicity of core clock genes (Bmal1, Per1-3, Cry1, RevErbα, Rora), clock-output genes (Dbp, E4bp4) and a glucocorticoid- and clock-controlled gene (Gilz) in liver, jejunum, kidney cortex, splenocytes and visceral adipose tissue (VAT). Adrenalectomy did not affect the phase of clock gene rhythms but distinctly modulated clock gene mRNA levels, and this effect was partially tissue-dependent. Adrenalectomy had a significant inhibitory effect on the level of Per1 mRNA in VAT, liver and jejunum, but not in kidney and splenocytes. Similarly, adrenalectomy down-regulated mRNA levels of Per2 in splenocytes and VAT, Per3 in jejunum, RevErbα in VAT and Dbp in VAT, kidney and splenocytes, whereas the mRNA amounts of Per1 and Per2 in kidney and Per3 in VAT and splenocytes were up-regulated. On the other hand, adrenalectomy had minimal effects on Rora and E4bp4 mRNAs. Adrenalectomy also resulted in decreased level of Gilz mRNA but did not alter the phase of its diurnal rhythm. Collectively, these findings suggest that adrenalectomy alters the mRNA levels of core clock genes and clock-output genes in peripheral organs and may cause tissue-specific modulations of their circadian profiles, which are reflected in changes of the amplitudes but not phases. Thus, the circulating corticosteroids are necessary for maintaining the high-amplitude rhythmicity of the peripheral clocks in a tissue-specific manner.  相似文献   

3.
Previous studies have demonstrated the presence of super-high affinity endothelin receptors with apparent Kd's on the order of pM in different brain tissues. This study was designed to characterize, in detail, the receptors present in SCP cells, a non-transformed sheep choroid plexus cell line. Competitive binding assays with receptor-selective ligands indicated the presence of at least three classes of binding sites: a conventional receptor of the ETA subtype with a Kd = 0.4 nM that mediates an increase in intracellular levels of inositol 1,4,5-trisphosphate (IP3) in response to ET-1 and two additional sites with much higher binding affinities. The latter two sites are not coupled to the common signal transduction pathways of IP3, cAMP and cGMP. Northern blot analysis confirmed the presence of only the ETA subtype mRNA in SCP cells. It remains to determined if the multiple binding sites are distinct gene products, multiple affinity states of a single receptor molecule or a result of cooperative association of one site with either the ligand or with other proteins.  相似文献   

4.
Our sleep–wake cycles and many other 24-hour rhythms of behavior and physiology persist in the absence of environmental cues. Genetic and biochemical studies have shown that such rhythms are controlled by internal molecular clocks. These are assembled from the cycling RNA and protein products of a small group of genes that are conserved throughout the animal kingdom.  相似文献   

5.
PEPT2 is functionally active and localized to the apical membrane of rat choroid plexus epithelial cells. However, little is known about the transport mechanisms of endogenous neuropeptides in choroid plexus, and the role of PEPT2 in this process. In the present study, we examined the uptake kinetics of carnosine in rat choroid plexus primary cell cultures and choroid plexus whole tissue from wild-type (PEPT2(+/+)) and null (PEPT2(-/-)) mice. Our results indicate that carnosine is preferentially taken up from the apical as opposed to basolateral membrane of cell monolayers, and that basolateral efflux in limited. Transepithelial flux of carnosine was not distinguishable from that of paracellular diffusion. The apical uptake of carnosine was characterized by a high affinity (K(m) = 34 microM), low capacity (V(max) = 73 pmol/mg protein/min) process, consistent with that of PEPT2. The non-saturable component was small (K(d) = 0.063 microL/mg protein/min) and, under linear conditions, was only 3% of the total uptake. Studies in transgenic mice clearly demonstrated that PEPT2 was responsible for over 90% of carnosine's uptake in choroid plexus whole tissue. These findings elucidate the unique role of PEPT2 in regulating neuropeptide homeostasis at the blood-cerebrospinal fluid interface.  相似文献   

6.
7.
Abnormalities in circadian rhythms play an important role in the pathogenesis of bipolar disorders (BD). Previous genetic studies have reported discrepant results regarding associations between circadian genes and susceptibility to BD. Furthermore, plausible behavioral consequences of at-risk variants remain unclear since there is a paucity of correlates with phenotypic biomarkers such as chronotypes. Here, we combined association studies with a genotype/phenotype correlation in order to determine which circadian genes variants may be associated with the circadian phenotypes observed in patients with BD. First, we compared the allele frequencies of 353 single nucleotide polymorphisms spanning 21 circadian genes in two independent samples of patients with BD and controls. The meta-analysis combining both samples showed a significant association between rs774045 in TIMELESS (OR?=?1.49 95%CI[1.18–1.88]; p?=?0.0008) and rs782931 in RORA (OR?=?1.31 95%CI[1.12–1.54]; p?=?0.0006) and BD. Then we used a “reverse phenotyping approach” to look for association between these two polymorphisms and circadian phenotypes in a subsample of patients and controls. We found that rs774045 was associated with eveningness (p?=?0.04) and languid circadian type (p?=?0.01), whereas rs782931 was associated with rigid circadian type (p?=?0.01). Altogether, these findings suggest that these variants in the TIMELESS and RORA genes may confer susceptibility to BD and impact on circadian phenotypes in carriers who thus had lower ability to properly adapt to external cues.  相似文献   

8.
ABSTRACT. The behaviour of the circadian locomotor rhythm of the New Zealand weta, Hemideina thoracica (White), supports the model that the underlying pacemaker consists of a population of weakly coupled oscillators. Certain patterns of locomotor activity, previously demonstrated almost exclusively in vertebrates, are presented here as evidence for the above hypothesis. They include after-effects of various pre-treatments, rhythm-splitting and spontaneous changes in the rhythm. After-effects, which describe the unstable behaviour of free-running circadian rhythms following particular experimental perturbations, have been observed in Hemideina following single light pulses, constant dim light, and laboratory and natural entrainment. Period changes occurred in the activity rhythm after single light pulses of 8-h and 12-h duration (25 lx). Constant dim light (0.1 lx) increased the free-running period (τ) of the activity rhythm, but the after-effect of constant dim light was either an increase or a decrease in τ. After-effects upon both τ and the active phase length of the activity rhythm were found following non-24-h light entrainment cycles with 8-h and 12-h light phases of 25 lx. Qualitative measurements of these after-effects upon τ are presented which reveal a relationship between both the direction and amount of change in τ, and the difference between entrainment cycle length (T) and pre-entrainment free-running period. The after-effect of natural entrainment was an initial short-period free-run (τ < 24h) lasting 5–10 days, generally followed by a rapid period lengthening to τ= 25–26 h. Support for the population model was provided by spontaneous dampening, recovery, and period changes of the rhythm, together with the disruption of the active phase following critical light perturbations, and rhythm-splitting. These Hemideina results are compared with the simulations of the Coupled Stochastic System of Enright (1980).  相似文献   

9.
10.
11.
12.
Daily activity rhythms that are dominated by internal clocks are called circadian rhythms. A central clock is located in the suprachiasmatic nucleus of the hypothalamus, and peripheral clocks are located in most mammalian peripheral cells. The central clock is entrained by light/dark cycles, whereas peripheral clocks are entrained by feeding cycles. The effects of nutrients on the central and peripheral clocks have been investigated during the past decade and much interaction between them has come to light. For example, a high-fat diet prolongs the period of circadian behavior, a ketogenic diet advances the onset of locomotor activity rhythms, and a high-salt diet advances the phase of peripheral molecular clocks. Moreover, some food factors such as caffeine, nobiletin, and resveratrol, alter molecular and/or behavioral circadian rhythms. Here, we review nutrients and food factors that modulate mammalian circadian clocks from the cellular to the behavioral level.  相似文献   

13.
14.
Reduced derivatives of folic acid (folates) play a critical role in the development, function and repair of the CNS. However, the molecular systems regulating folate uptake and homeostasis in the central nervous system remain incompletely defined. Choroid plexus epithelial cells express high levels of folate receptor α (FRα) suggesting that the choroid plays an important role in CNS folate trafficking and maintenance of CSF folate levels. We have characterized 5-methyltetrahydrofolate (5-MTHF) uptake and metabolism by primary rat choroid plexus epithelial cells in vitro . Two distinct processes are apparent; one that is FRα dependent and one that is independent of the receptor. FRα binds 5-MTHF with high affinity and facilitates efficient uptake of 5-MTHF at low extracellular folate concentrations; a lower affinity FRα independent system accounts for increased folate uptake at higher concentrations. Cellular metabolism of 5-MTHF depends on the route of folate entry into the cell. 5-MTHF taken up via a non-FRα -mediated process is rapidly metabolized to folylpolyglutamates, whereas 5-MTHF that accumulates via FRα remains non-metabolized, supporting the hypothesis that FRα may be part of a pathway for transcellular movement of the vitamin. The proton-coupled folate transporter, proton-coupled folate transporter (PCFT), mRNA was also shown to be expressed in choroid plexus epithelial cells. This is consistent with the role we have proposed for proton-coupled folate transporter in FRα-mediated transport as the mechanism of export of folates from the endocytic compartment containing FRα.  相似文献   

15.
16.
Inflammation is an integral part of the body's physiological repair mechanism, unless it remains unresolved and becomes pathological, as evident in the progressive nature of neurodegeneration. Based on studies from outside the central nervous system (CNS), it is now understood that the resolution of inflammation is an active process, which is dependent on well‐orchestrated innate and adaptive immune responses. Due to the immunologically privileged status of the CNS, such resolution mechanism has been mostly ignored. Here, we discuss resolution of neuroinflammation as a process that depends on a network of immune cells operating in a tightly regulated sequence, involving the brain's choroid plexus (CP), a unique neuro‐immunological interface, positioned to integrate signals it receives from the CNS parenchyma with signals coming from circulating immune cells, and to function as an on‐alert gate for selective recruitment of inflammation‐resolving leukocytes to the inflamed CNS parenchyma. Finally, we propose that functional dysregulation of the CP reflects a common underlying mechanism in the pathophysiology of neurodegenerative diseases, and can thus serve as a potential novel target for therapy.  相似文献   

17.
哺乳动物昼夜节律生物钟研究进展   总被引:2,自引:0,他引:2  
徐祖元 《生命科学》2004,16(2):104-108
昼夜节律生物钟是一种以近似24小时为周期的自主维持的振荡器,在分子水平上,该振荡器是一个由9个基因组成的转录翻译反馈环路系统。它能受外界环境影响重新设置节律,使自身机体活动处于最佳状态。除了进行自我调节外,生物钟基因还能通过调节代谢途径中特定基因表达而影响机体生理生化过程。在过去的几年里,借用遗传学和分子生物学工具,我们对哺乳动物昼夜节律生物钟的分子基础有了新的认识,本文综述了这一进展,并展望了它们在研究人的昼夜节律行为异常领域的前景。  相似文献   

18.
《Cell》2023,186(4):764-785.e21
  1. Download : Download high-res image (217KB)
  2. Download : Download full-size image
  相似文献   

19.
The objectives of this study were to test the nighttime effects of the lunar phase on circadian rhythm in the humbug damselfish, Dascyllus aruanus. We measured moonlight intensities at eight different phases across the lunar cycle. At each lunar phase, the circadian rhythm was evaluated by measuring the clock genes cryptochrome 1 and period 2. In addition, we measured arylalkylamine N-acetyltransferase 2 (AANAT2), melatonin and melatonin receptor 1 (MT-R1). The moonlight intensity was highest at full moon and lowest during the waning crescent. Clock gene expression was highest during the full moon compared to the other phases. By contrast, the plasma concentrations of AANAT2 and melatonin and the MT-R1 mRNA expression were highest during the full moon phase. Our results suggest that moonlight affects circadian rhythm patterns in the humbug damselfish. There is a need to investigate potential other physiological effects of lunar phase shifts.  相似文献   

20.
The possibility that the 24h rhythm output is the composite expression of ultradian oscillators of varying periodicities was examined by assessing the effect of external continuously or pulsed (20-minute) Gonadotropinreleasing hormone (GnRH) infusions on in vitro luteinizing hormone (LH) release patterns from female mouse pituitaries during 38h study spans. Applying stepwise analyses (spectral, cosine fit, best-fit curve, and peak detection analyses) revealed the waveform shape of LH release output patterns over time is composed of several ultradian oscillations of different periods. The results further substantiated previous observations indicating the pituitary functions as an autonomous clock. The GnRH oscillator functions as a pulse generator and amplitude regulator, but it is not the oscillator that drives the ultradian LH release rhythms. At different stages of the estrus cycle, the effect of GnRH on the expression of ultradian periodicities varies, resulting in the modification of their amplitudes but not their periods. The functional output from the system of ultradian oscillators may superimpose a “circadian or infradian phenotype” on the observed secretion pattern. An “amplitude control” hypothesis is proposed: The temporal pattern of LH release is governed by several oscillators that function in conjunction with one another and are regulated by an amplitude-controlled mechanism. Simulated models show that such a mechanism results in better adaptive response to environmental requirements than does a single circadian oscillator. (Chronobiology International, 18(3), 399-412, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号