首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper(II) coordination complexes of the neutral ligand, tris(3-tert-butyl-5-methyl-1-pyrazolyl)methane (L2′), i.e. the copper(II) nitrato complexes [Cu(L2′)(NO3)][Cu(NO3)4]1/2 (1) and [Cu(L2′)(NO3)](ClO4) (2) and the copper(II) chloro complex [Cu(L2′)(Cl)](ClO4) (3), and its anionic borate analogue, hydrotris(3-tert-butyl-5-methyl-1-pyrazolyl)borate (L2), i.e. the copper(II) nitrato complex [Cu(L2)(NO3)] (4) and the copper(II) chloro complex [Cu(L2)(Cl)] (5), were synthesized in order to investigate the influence of ligand framework and charge on their structure and physicochemical properties. While X-ray crystallography did not show any definitive trends in terms of copper(II) atom geometry in four-coordinate copper(II) chloro complexes 3 and 5, different structural trends were observed in five-coordinate copper(II) nitrato complexes 1, 2, and 4. These complexes were also characterized by spectroscopic techniques, namely, UV-Vis, ESR, IR/far-IR, and X-ray absorption spectroscopy.  相似文献   

2.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

3.
New copper(II) complexes [CuL2]2+ (L2=7,7,9-trimethyl-1,3,6,10,13-pentaazabicyclo[11,2,11.13]hexadec-9-ene) and [Cu2(L3)(H2O)2]4+ have been prepared by the reaction of [CuL1]2+ (L1=5,5,7-trimethyl-1,4,8,11,14-pentaazatetradce-7-ene) and formaldehyde. The mononuclear complex [CuL2]2+ has a square-planar coordination geometry with a 5-6-5-6 chelate ring sequence and is relatively stable even in low pH at room temperature. The dinuclear complex [Cu2(L3)(H2O)2]4+ consists of two unsaturated 15-membered pentaaza macrocyclic units (7,7,9-trimethyl-1,3,6,10,13-pentaazacyclopentadec-9-ene) that are linked together by a methylene group in a tilted face-to-face arrangement [Cu?Cu distance: 7.413(2) Å ]. Each macrocyclic unit of [Cu2(L3)(H2O)2]4+ contains one four-membered chelate ring and has a severely distorted octahedral coordination polyhedron. The dinuclear complex is quite stable in aqueous solutions containing an excess of formaldehyde or in dry acetonitrile but is decomposed to [CuL1]2+ and [CuL2]2+ in pure water.  相似文献   

4.
Some copper(I) complexes of the type [Cu(L)(dppe)]X (1-4) [where L = (3-trifluoromethylphenyl)pyridine-2-ylmethylene-amine; dppe = 1,2-bis(diphenylphosphino)ethane; X = Cl, CN, ClO4 and BF4] have been synthesized by the condensation of 3-aminobenzotrifluoride with 2-pyridinecarboxaldehyde followed by the reaction with CuCl, CuCN, [Cu(MeCN)4]ClO4 and [Cu(MeCN)4]BF4 in presence of dppe. The complexes 1-4 were then characterized on the basis of elemental analysis, IR, UV-Vis and 1H NMR spectral studies. The representative complex of the series 4 has been characterized by single crystal X-ray diffraction which reveal that in complex the central copper(I) ion assumes the irregular pseudo-tetrahedral geometry. The catalytic activity of the complexes was tested and it was found that all the complexes worked as effective catalyst in the amination of aryl halide.  相似文献   

5.
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV–vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.  相似文献   

6.
The new pentapyridyldiamine ligand, L1, which incorporates two bis(2-pyridylethyl)amine donor domains held together by a 2,6-dimethylenepyridine linker, is readily prepared. In the presence of metal salts, L1 is unstable due to facile elimination of vinyl pyridine. Complexes of L1 are therefore difficult to isolate. Nonetheless, a novel copper dimer [Cu2(L1)(μ-OH)(CH3CN)](ClO4)3 has been isolated in small quantities along with the interesting monomer [Cu(L2)](ClO4)2, in which L2 is the tetrapyridyldiamine ligand derived from the decomposition of L1 by loss of one pyridylethyl `arm'. The crystal structures of the two complexes are reported: the [Cu2(L1)(μ-OH)(CH3CN)]2+ cation exhibits a μ-hydroxo-bridged dicopper(II) core and a coordinated acetonitrile molecule, akin to a putative intermediate in nitrile hydrolysis, and the chiral [Cu(L2)]2+ cation is revealed to have a five-coordinate copper(II) centre that is stabilised by an intramolecular hydrogen-bond between the 2° amine group and a pendant pyridylethyl `arm'.  相似文献   

7.
Multidentate ligands containing tripodal pyridyl-amine moieties tethered to a carboxylate group by alkyl linkers of varying lengths were synthesized to obtain a series of water-soluble ligands to elucidate the effects of the differing coordination environments on the properties of the resulting metal complexes. These new, water-soluble ligands, [bis-(2-pyridin-2-yl-ethyl)-amino]-acetic acid (L1), 3-[bis-(2-pyridin-2-yl-ethyl)-amino]-propionic acid (L2), 4-[bis-(2-pyridin-2-yl-ethyl)-amino]-butyric acid (L3), and 6-[bis-(2-pyridin-2-yl-ethyl)-amino]-hexanoic acid (L4), were treated with copper(II) perchlorate hexahydrate to yield the corresponding Cu(II) complexes, which have all been characterized by X-ray crystallography. L1 binds Cu(II) to form the tetrameric complex {[Cu(μ-1)][ClO4] · 4H2O}4 (1) in the solid state, whereas the Cu(II) complexes of ligands L2-L4 form long-chain one-dimensional polymeric complexes {[Cu(μ-L2)][ClO4] · H2O}n (2), {[Cu(μ-L3)][ClO4] · H2O}n (3), and {[Cu(μ-L2)][ClO4]  · H2O}n (4), respectively, in the solid state. Complexes 1-4 dissolved in 10% (v/v) CH3CN aqueous solution were tested for their ability to promote the hydrolysis of the activated ester compound 4-nitrophenylacetate (NA), with 3 being the most active complex and 1 being the least active, possibly due to differences in the ability of the carboxylate moiety to act as either a general base or a nucleophile in the hydrolysis of NA as dictated by the tether length. The pKa values of the copper-bound aquo ligands in solution were measured by spectrophotometric titration.  相似文献   

8.
The macrocyclic symmetrical and a series of unsymmetrical binuclear copper(II) complexes have been synthesized by using mononuclear complex [CuL] [3,3′-((1E,7E)-3,6-dioxa-2,7-diazaocta-1,7-diene-1,8-diyl)bis(3-formyl-5-methyl-2-diolato)copper(II)]. Another compartment of the [CuL] have been condensed with various diamines like 1,2-bis(aminooxy)ethane (L1), 1,2-diamino ethane(L2a), 1,3-diamino propane(L2b), 1,4-diamino butane(L2c), 1,2-diamino benzene(L2d), 1,8-diamino naphthalene(L2e) and characterized by elemental, spectroscopic, and X-ray crystallographic methods. The influence of the coordination geometry and the ring size of the binucleating ligands on the electronic, redox, magnetic, catecholase activity, DNA binding and cleavage properties have been studied. The molecular structures of the symmetrical binuclear complex [Cu2L1(H2O)2](ClO4)2 (1) and unsymmetrical binuclear complex [Cu2L2b(ClO4)(H2O)]ClO4 (2b) were determined by X-ray crystallography. Both of them were discrete binuclear species in which each Cu(II) ions are in distorted square pyramid. The Cu?Cu distances vary from 3.0308 (2b) to 3.0361 Å (1). Electrochemical studies evidenced that two quasi-reversible one electron-transfer reduction waves −0.91 to −1.01 V, −1.26 to −1.55 V) for binuclear complexes are obtained in the cathodic region. Cryomagnetic investigation of the binuclear complexes reveals a weak antiferromagnetic spin exchange interaction between the Cu(II) ions within the complexes (−2J = 104.4-127.5 cm−1). The initial rate (Vin) for the oxidation of 3,5-di-tert-butylcatechol to o-quinone by the binuclear Cu(II)complexes are in the range 3.6 × 10−5 to 7.3 × 10−5 Ms−1. The binuclear Cu(II) complexes are avid binders to calf thymus DNA. The complexes display significant oxidative cleavage of circular plasmid pBR322 DNA in the presence of mercaptoethanol using the singlet oxygen as a reactive species. The aromatic diamine condensed macrocyclic ligands of copper(II) complexes display better DNA interaction and significant chemical nuclease activity than the aliphatic diamine condensed macrocyclic Cu(II) complexes.  相似文献   

9.
Two copper(II) chloride complexes of amidino-O-methylurea (L1), [Cu(L1)Cl2] (1), and (N-benzyl)-amidino-O-methylurea (L2), [Cu(L2)Cl2] (2), were prepared and characterized by elemental analysis, infrared, diffuse reflectance, electron spin resonance and electrospray ionization mass spectra. Their cytosine binding abilities has been studied and found that two cytosine molecules are able to coordinate with the copper centers by replacing the chloride ligands to yield the bifunctional binding adducts [Cu(L1)(cyt)2]Cl2 (1c) and [Cu(L2)(cyt)2]Cl2 (2c), respectively. The shift of the CO band of cytosine in both cytosine-bound products to higher energy suggested that the N(3)-cytosine atom coordinates to the copper center. The large blue shifts of the d-d absorbance maxima and the nine superhyperfine splitting from the CuN4 chromophore were also observed in their electronic and EPR spectra. Their thermal decompositions have also supported the interaction of cytosine with complexes 1 and 2. Density functional calculations have also been performed and revealed that square planar coordination geometry is more stable for both 1c and 2c. The binding energy of 1c is found to be ∼20% lower than that of 2c, indicative of the higher binding potential of 1c.  相似文献   

10.
The reaction of Cu(ClO4)2·6H2O with the Schiff base derived from 1,1′-(2,6-pyridyl)-bis-1,3-butanedione and 3-amino-1-propanol, (H4L2), yields the complex Cu(H4L2)(ClO4)2·H2O. The crystal structure of this complex is triclinic, R = 0.0521, 5602 reflections. The species is dimeric leading to a binuclear copper(II) complex in which the well- separated (8.93 Å intramolecular and 5.46 Å inter- molecular) copper(II) atoms are in distorted square pyramidal geometries.  相似文献   

11.
A new macropolycycle, 2,13-dimethyl-1,5,12,16-tetraazapentacyclo[14.6.2.25.12.06.11.017.22]hexacosane (L3), has been prepared by the reaction of 3,14-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.07.12]docosane (L1) with 1-bromo-2-chloroethane. The macropolycycle readily reacts with anhydrous copper(II) ion to yield [CuL3]2+ in dry methanol but does not with nickel(II) ion, showing a high copper(II) ion selectivity. Crystal structure of [CuL3](ClO4)2 shows that the complex has a distorted square-planar coordination polyhedron with a trans-IV type N-conformation. The Cu-N distances [1.989(3) and 2.015(3) Å] of [CuL3](ClO4)2 are distinctly shorter than those of [CuL1](ClO4)2 and other related macrocyclic copper(II) complexes. The d-d transition band for [CuL3](ClO4)2 is observed at 447 nm, which is ca. 40 nm shorter than that for [CuL1](ClO4)2.  相似文献   

12.
Two new sulfurated triazoline ligands have been synthesized by functionalization of glycine and l-alanine (HL1 and HL2, respectively) at the carboxylate site with retention of chirality in the latter case. The ligands and their copper(II) complexes have been characterized by spectroscopic methods and their structures were determined by X-ray diffraction. The compound [Cu(H2L2)2](H5O2)(SO4)2(HSO4) presents a very disordered structure with regard to the anionic counterion and a very unusual elongated crystal cell. In all the complexes the ligands are (N,S) coordinated to copper(II), while the amino groups remain protonated and uncoordinated. The ligands have also been studied in solution and their dissociation constants were determined both by potentiometry and 1H NMR titrations. Potentiometric studies on the complex [Cu(H2L2)2](H5O2)(SO4)2(HSO4) were performed to determine the dissociation constants of the ligand once coordinated to the metal. The complex [CuCl2(H2L1)]Cl was studied also by magnetic susceptibility measurements, showing an interesting antiferromagnetic behavior at low temperature which has been interpreted on the basis of its crystal packing.  相似文献   

13.
A di-N-functionalized 14-membered tetraaza macrocycle, [H4L3](ClO4)2 (L3 = 1,8-bis(2-carboxyethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane), has been synthesized by acid hydrolysis of 1,8-bis(2-cyanoethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (L2). The copper(II) complexes [CuL2](ClO4)2 and [Cu(H2L3)](ClO4)2 were prepared and characterized. The complex [Cu(H2L3)]2+ readily reacts with methanol to yield [CuL4]2+ (L4 = 1,8-bis(2-carbomethoxyethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane). The N-CH2CH2COOH groups of [Cu(H2L3)](ClO4)2 are not coordinated to the metal ion in the solid state but are involved in coordination in various non-aqueous solvents or in aqueous solutions of pH ? 1.0. Interestingly, [CuL4](ClO4)2 exists as two stable structural isomers, 1 (the pendant ester groups are not involved in coordination) and 2 (one of the two ester groups is coordinated to the metal ion), in the solid state; the two isomers can be prepared selectively by controlling ionic strength of a methanol solution of the complex. Crystal structures and coordination behaviors of the two isomers are described. The di-N-cyanoethylated macrocyclic complex [CuL2](ClO4)2 is rapidly decomposed in 0.1 M NaOH solution even at room temperature. On the other hand, [Cu(H2L3)](ClO4)2 and [CuL4](ClO4)2 are quite inert against decomposition under similar basic conditions. In acidic or basic aqueous solutions, [CuL4]2+ is hydrolyzed to [Cu(H2L3)]2+ or [CuL3].  相似文献   

14.
Two mixed-ligand copper(II) complexes [{Cu(L1)(μ1,3-N3)}{Cu(L)(μ1,3-N3)(μ1,1-N3)}]n (1) [HL1 = 1-(N-ortho-hydroxyacetophenimino)-2,2-dimethyl-aminoethane; L = 2-(dimethylamino)-ethylamine] and [{Cu(L2)(μ1,3-N3)}{Cu(L)(μ1,3-N3)(μ1,1-N3)}]n (2) [HL2 = 1-(N-5-methoxy-ortho-hydroxyacetophenimino)-2,2-dimethyl-aminoethane] have been formed upon addition of aqueous solution of sodium azide to a methanolic solution of copper nitrate trihydrate and corresponding Schiff-base ligands. The ligands, HL1 and HL2 undergo partial hydrolysis of their imine bond during the course of reaction. Both the complexes contain single end-to-end (μ1,3) azido bridged 1D infinite chains (rail) which propagate parallel to the crystallographic b-axis; neighboring chains are interconnected by pairs through double asymmetric end-on (μ1,1) azido bridges (rung) to yield a ladder-like structure. In both complexes, rungs (end-on azido bridges) do not connect copper centers of the chains like in a regular ladder; instead they connect only the alternating copper sites of the 1D chain. In a chain the coordination environment around copper(II) ions are not the same: while the {Cu(L1)(μ1,3-N3)} and {Cu(L2)(μ1,3-N3)} moieties have a penta-coordinated copper(II) center, the copper(II) ion of the neighboring {Cu(L1)(μ1,3-N3)(μ1,1-N3)} or {Cu(L2)(μ1,3-N3)(μ1,1-N3)} moiety has an octahedral coordination environment. The variable temperature (2-300 K) magnetic susceptibility measurements showed that the magnetic interaction between the metal centers in complexes 1 and 2 is dominantly antiferromagnetic. The results of magnetic model are in good agreement with the experimental data.  相似文献   

15.
New structurally constrained tetraaza macrocycles 2,3-dimethyl-1,5,12,16-tetraazapentacyclo[14.6.3.35.12.06.11.017.22]octacosane (L6) and 2,2,4,10,12,18,20-octamethyl-1,5,9,13-tetraazatricyclo[11.3.2. 25.9]eicosane (L7) have been prepared in high yield by direct reaction of 1,3-dibromopropane with 3,14-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.07.12]docosane (L3) or 2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclodecane (L5). The macrocycle L6 readily reacts with anhydrous copper(II) ion to yield [CuL6]2+ in dry methanol but does not react with nickel(II) ion, showing a high copper(II) ion selectivity. On the other hand, neither of the metal ions is inserted into the cavity of L7 in similar conditions. The copper(II) complex [CuL6](ClO4)2 has a severely distorted square-planar coordination polyhedron with a rarely observed trans-IV type N-conformation. The visible absorption spectrum of [CuL6]2+ shows the d-d transition band at 490 nm (ε=690 M−1 cm−1); the wavelength is quite similar to that of [CuL3]2+, but the molar absorption coefficient is extraordinarily larger than those of [CuL3]2+ and other related tetraaza macrocyclic copper(II) complexes.  相似文献   

16.
The disproportionation reaction between the copper(II) complexes, Cu(ClO4)2 · 6H2O and [Cu(S2CNR2)2] is a well-established route to copper(III) complexes [Cu(S2CNR2)2][ClO4] but to date the nature of the copper(I) species generated has remained a mystery. We now show that with [Cu(S2CNPr2)2] this is the copper(I) cluster, [Cu822-S2CNPr2)6][ClO4]2, which contains a cubic array of copper atoms, each face cube being capped by a dithiocarbamate ligand such that the sulfur atoms define an icosahedron and the backbone carbons an octahedron around the cube centroid. A crystal structure of [Cu421-S2CNBu2)4] is also presented for comparison.  相似文献   

17.
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy)2](ClO4)2, where L1 = N,N’-bis(4-nitrocinnamald-ehyde)ethylenediamine and L2 = N,N’-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, Kb and the linear Stern–Volmer quenching constant, KSV. The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy)2](ClO4)2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.  相似文献   

18.
The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO4)2] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (Kb) was determined as 1.25 × 104 M?1, which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.  相似文献   

19.
Abstract

For efficient designing of metallodrugs, it is imperative to analyse the binding affinity of those drugs with drug-carrying serum albumins to comprehend their structure–activity correlation for biomedical applications. Here, cobalt(II) and cobalt(III) complexes comprising three phendione ligands, [Co(phendione)3]Cl2 (1) and [Co(phendione)3]Cl3 (2), where, phendione = 1,10-phenanthroline-5,6-dione, has been chosen to contrast the impact of their hydrophobicity and ionicity on binding with bovine serum albumin (BSA) through spectrophotometric titrations. The attained hydrophobicity values using octanol/water partition coefficient method manifested that complex 1 is more hydrophobic than complex 2, which could be attributed to lesser charge on its coordination sphere. The interaction of complexes 1 and 2 with BSA using steady state fluorescence studies revealed that these complexes quench the intrinsic fluorescence of BSA through static mechanism, and the extent of quenching and binding parameters are higher for complex 2. Further thermodynamics of BSA-binding studies revealed that complexes 1 and 2 interact with BSA through hydrophobic and hydrogen bonding/van der Waals interactions, respectively. Further, UV–visible absorption, circular dichroism and synchronous fluorescence studies confirmed the occurrence of conformational and microenvironmental changes in BSA upon binding with complexes 1 and 2. Molecular docking studies have also shown that complex 2 has a higher binding affinity towards BSA as compared to complex 1. This sort of modification of ionicity and hydrophobicity of metal complexes for getting desirable binding mode/strength with drug transporting serum albumins will be a promising pathway for designing active and new kind of metallodrugs for various biomedical applications.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
The macrocycles L1-L3 having N2S2O-, N2S2-, and N2S3-donor sets, respectively, and incorporating the 1,10-phenanthroline unit interact in EtOH and MeCN solutions with CuII to give 1:1 [M(L)]2+ complex species. The compounds [Cu(L1)(ClO4)]ClO4 (1), [Cu(L2)(ClO4)]ClO4 ·  (2) and [Cu(L3)](ClO4)2 (3) were isolated at the solid state and the first two also characterised by X-ray diffraction studies. The conformation adopted by L1 and L2 in the cation complexes reveals the aliphatic portion of the rings folded over the plane containing the heteroaromatic moiety with the ligands encapsulating the metal centre within their cavity by imposing, respectively, a square-based pyramidal and a square planar geometry. In both complexes, the metal ion completes its coordination sphere by interacting with a ClO4 ligand. The compound [Cu(L3)2](PF6)2 (4) containing a 1:2 cation complex was also isolated at the solid state: EPR spectroscopy measurements suggest the presence of a CuN4 chromophore in this complex. The EPR and electronic spectral features of 1-4 have been studied and their redox properties examined in comparison with those observed for Type-1 blue copper proteins.The reactivity of L1-L3 has also been tested toward stoichiometric amounts of the CuI salt [CuCl(PPh3)3].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号