首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione S-transferases (GSTs) comprise a diverse superfamily of enzymes found in organisms from all kingdoms of life. GSTs are involved in diverse processes, notably small-molecule biosynthesis or detoxification, and are frequently also used in protein engineering studies or as biotechnology tools. Here, we report the high-resolution X-ray structure of Atu5508 from the pathogenic soil bacterium Agrobacterium tumefaciens (atGST1). Through use of comparative sequence and structural analysis of the GST superfamily, we identified local sequence and structural signatures, which allowed us to distinguish between different GST classes. This approach enables GST classification based on structure, without requiring additional biochemical or immunological data. Consequently, analysis of the atGST1 crystal structure suggests a new GST class, distinct from previously characterized GSTs, which would make it an attractive target for further biochemical studies.  相似文献   

2.
Plant glutathione transferases (GSTs) comprise a large family of inducible enzymes that play important roles in stress tolerance and herbicide detoxification. Treatment of Phaseolus vulgaris leaves with the aryloxyphenoxypropionic herbicide fluazifop-p-butyl resulted in induction of GST activities. Three inducible GST isoenzymes were identified and separated by affinity chromatography. Their full-length cDNAs with complete open reading frame were isolated using RACE-RT and information from N-terminal amino acid sequences. Analysis of the cDNA clones showed that the deduced amino acid sequences share high homology with GSTs that belong to phi and tau classes. The three isoenzymes were expressed in E. coli and their substrate specificity was determined towards 20 different substrates. The results showed that the fluazifop-inducible glutathione transferases from P. vulgaris (PvGSTs) catalyze a broad range of reactions and exhibit quite varied substrate specificity. Molecular modeling and structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of these enzymes. These results provide new insights into catalytic and structural diversity of GSTs and the detoxifying mechanism used by P. vulgaris.  相似文献   

3.
Glutathione S-transferases (GSTs) are involved in detoxification of xenobiotic compounds and in the biosynthesis of important metabolites. All GSTs activate glutathione (GSH) to GS(-); in many GSTs, this is accomplished by a Tyr at H-bonding distance from the sulfur of GSH. The high-resolution structure of GST from Schistosoma haematobium revealed that the catalytic Tyr occupies two alternative positions, one external, involving a pi-cation interaction with the conserved Arg21, and the other inside the GSH binding site. The interaction with Arg21 lowers the pK(a) of the catalytic Tyr10, as required for catalysis. Examination of several other GST structures revealed the presence of an external pocket that may accommodate the catalytic Tyr, and suggested that the change in conformation and acidic properties of the catalytic Tyr may be shared by other GSTs. Arginine and two other residues of the external pocket constitute a conserved structural motif, clearly identified by sequence comparison.  相似文献   

4.
Phylogenetic analyses have identified positive selection as an important driver of protein evolution, both structural and functional. However, the lack of appropriate combined functional and structural assays has generally hindered attempts to elucidate patterns of positively selected sites and their effects on enzyme activity and substrate specificity. In this study we investigated the evolutionary divergence of the glutathione S-transferase (GST) family in Pinus tabuliformis, a pine that is widely distributed from northern to central China, including cold temperate and drought-stressed regions. GSTs play important roles in plant stress tolerance and detoxification. We cloned 44 GST genes from P. tabuliformis and found that 26 of the 44 belong to the largest (Tau) class of GSTs and are differentially expressed across tissues and developmental stages. Substitution models identified five positively selected sites in the Tau GSTs. To examine the functional significance of these positively selected sites, we applied protein structural modeling and site-directed mutagenesis. We found that four of the five positively selected sites significantly affect the enzyme activity and specificity; thus their variation broadens the GST family substrate spectrum. In addition, positive selection has mainly acted on secondary substrate binding sites or sites close to (but not directly at) the primary substrate binding site; thus their variation enables the acquisition of new catalytic functions without compromising the protein primary biochemical properties. Our study sheds light on selective aspects of the functional and structural divergence of the GST family in pine and other organisms.  相似文献   

5.
Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4′ in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.  相似文献   

6.
Ubiquitously distributed multifunctional superfamily of Glutathione S-transferases (GST) generally constitute a dimeric enzymes and catalyse the conjugation of the thiol group of the glutathione (GSH) to diverse electrophilic centres on lipophilic molecules with the formation of rather less active end products. Besides their well investigated conjugation reaction for the detoxification of endogenous and xenobiotic compounds, they can also be involved in both GSH dependent peroxidation or isomerization reactions, and several other non-catalytic functions, like binding of non-substrate ligands, stress-induced signalling processes and preventing of apoptosis. Plant GSTs have been a focus of attention because of their roles in herbicide detoxification and today seven distinct classes of soluble (cytosolic) GSTs are presented as Phi, Tau, Theta, Zeta, Lambda, Dehydroascorbate reductases (DHARs) and Tetrachlorohydroquinone dehalogenase (TCHQD). While GSTs show overall sequence diversification within and between classes, they retain a high level of three-dimensional structure conservation over long evolutionary periods. In this review mainly the soluble plant GSTs will be considered by giving attention to their structures, subcellular localizations, genomic organizations, catalytic/noncatalytic functions, and comparisons given with respect to their mammalian counterparts where necessary.  相似文献   

7.
Glutathione S-transferases (GSTs) form a widespread enzyme superfamily mainly involved in phase II detoxification. Differential expression of the various GST isoforms, differing in catalytic and structural properties, correlates with physiological and pathological states. Fast and simple determination of the GST profile is expected to be an important diagnostic tool in disease analysis. Here we propose a combined approach of high resolution separation techniques and electrospray mass spectrometric analyses for characterizing the spectrum of GSTs in male mouse liver. In this approach, the sensitivity and speed required for tissue GST profiling studies is achieved by tracking the reconstructed ion current of selected reporter peptides following chromatographic separation. This simple procedure, in which an affinity protein bait is followed by a chemical fragmentation and mass spectrometric analysis, could be sufficiently sensitive to detect the qualitative differences between physiological and pathological states.  相似文献   

8.
In contrast to their mammalian hosts, parasitic nematodes are heme auxotrophs and require pathways for the uptake and transport of exogenous heme for incorporation into hemoproteins. Phase II detoxification Nu-class glutathione transferase (GST) proteins have a proposed role as heme-binding ligandins in parasitic nematodes. The genome-verified free-living nematode Caenorhabditis elegans also cannot synthesize heme and is an ideal functional genomics model to delineate the role of individual nematode GSTs in heme trafficking and heme detoxification. In this study, C. elegans was exposed to externally controlled heme concentrations ranging from 20-fold suboptimal growth levels to 10-fold supra-optimal growth levels to mimic fluctuations in blood- and tissue-feeding parasitic cousins from the same nematode group. A new heme-responsive GST (GST-19) was identified by subproteomics approaches. Functional characterization of this and two other C. elegans GSTs revealed that they all have high affinity for heme compounds similar to mammalian soluble heme carrier proteins such as HBP23 ( K d approximately 10 (-8) M). In the genomics-predicted absence of orthologous mammalian soluble heme-binding proteins in nematodes, we propose that Nu-class GSTs are candidates in the cellular processing of heme compounds. Toxic heme binding may be coupled to enzymatic protection from its breakdown as several GSTs possess glutathione peroxidase activity.  相似文献   

9.
In the present paper, we report a novel class of GSTs (glutathione transferases), called the Chi class, originating from cyanobacteria and with properties not observed previously in prokaryotic enzymes. GSTs constitute a widespread multifunctional group of proteins, of which mammalian enzymes are the best characterized. Although GSTs have their origin in prokaryotes, few bacterial representatives have been characterized in detail, and the catalytic activities and substrate specificities observed have generally been very modest. The few well-studied bacterial GSTs have largely unknown physiological functions. Genome databases reveal that cyanobacteria have an extensive arsenal of glutathione-associated proteins. We have studied two cyanobacterial GSTs which are the first examples of bacterial enzymes that are as catalytically efficient as the best mammalian enzymes. GSTs from the thermophile Thermosynechococcus elongatus BP-1 and from Synechococcus elongatus PCC 6301 were found to catalyse the conjugation of naturally occurring plant-derived isothiocyanates to glutathione at high rates. The cyanobacterial GSTs studied are smaller than previously described members of this enzyme family, but display many of the typical structural features that are characteristics of GSTs. They are also active towards several classical substrates, but at the same moderate rates that have been observed for other GSTs derived from prokaryotes. The cloning, expression and characterization of two cyanobacterial GSTs are described. The possible significance of the observed catalytic properties is discussed in the context of physiological relevance and GST evolution.  相似文献   

10.
Zeng QY  Wang XR 《FEBS letters》2005,579(12):2657-2662
Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification in plants. However, there is extremely little information on the molecular characteristics of GSTs in gymnosperms. In a previous study, we cloned a tau class GST (PtGSTU1) from a gymnosperm (Pinus tabulaeformis) for the first time. Based on the N-terminal amino acid sequence identity to the available crystal structures of plant tau GSTs, Ser13, Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 were proposed as glutathione-binding (G-site) residues. The importance of Ser13 as a G-site residue was investigated previously. The functions of Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 are examined in this study through site-directed mutagenesis. Enzyme assays and thermal stability measurements on the purified recombinant PtGSTU1 showed that substitution at each of these sites significantly affects the enzyme's substrate specificity and affinity for GSH, and these residues are essential for maintaining the stability of PtGSTU1. The results of protein expression and refolding analyses suggest that Ile54 is involved in the protein folding process. The findings demonstrate that the aforementioned residues are critical components of active sites that contribute to the enzyme's catalytic activity and structural stability.  相似文献   

11.
Glutathione transferases (GSTs) are ubiquitous, multifunctional proteins encoded by large gene families. In different plant species this gene family is comprised of 25–60 members, that can be grouped into six classes on the basis of sequence identity, gene organization and active site residues in the protein. The Phi and Tau classes are the most represented and are plant specific, while Zeta and Theta GSTs are found also in animals. Despite pronounced sequence and functional diversification, GSTs have maintained a highly conserved three-dimensional structure through evolution. Most GSTs are cytosolic and active as dimers, performing diverse catalytic as well as non-catalytic roles in detoxification of xenobiotics, prevention of oxidative damage and endogenous metabolism. Among their catalytic activities are the conjugation of electrophilic substrates to glutathione, glutathione-dependent isomerizations and reductions of toxic organic hydroperoxides. Their main non-catalytic role is as hormone and flavonoid ligandins. GST genes are predominantly organized in clusters non-randomly distributed in the genome. Phylogenetic studies indicate that plant GSTs have mainly evolved after the divergence of plants, the two prevalent Phi and Tau classes being the result of recent, multiple duplication events.  相似文献   

12.
A library of alpha class glutathione transferases (GSTs), composed of chimeric enzymes derived from human (A1-1, A2-2 and A3-3), bovine (A1-1) and rat (A2-2 and A3-3) cDNA sequences was constructed by the method of DNA shuffling. The GST variants were screened in bacterial lysates for activity with the immunosuppressive agent azathioprine, a prodrug that is transformed into its active form, 6-mercaptopurine, by reaction with the tripeptide glutathione catalyzed by GSTs. Important structural determinants for activity with azathioprine were recognized by means of primary structure analysis and activities of purified enzymes chosen from the screening. The amino acid sequences could be divided into 23 exchangeable segments on the basis of the primary structures of 45 chosen clones. Segments 2, 20, 21, and 22 were identified as primary determinants of the azathioprine activity representing two of the regions forming the substrate-binding H-site. Segments 21 and 22 are situated in the C-terminal helix characterizing alpha class GSTs, which is instrumental in their catalytic function. The study demonstrates the power of DNA shuffling in identifying segments of primary structure that are important for catalytic activity with a targeted substrate. GSTs in combination with azathioprine have potential as selectable markers for use in gene therapy. Knowledge of activity-determining segments in the structure is valuable in the protein engineering of glutathione transferase for enhanced or suppressed activity.  相似文献   

13.
Our recent study highlights the role of 2 glutathione transferases (GSTs) in the detoxification of the environmental pollutant, 2,4,6-trinitrotoluene (TNT) in Arabidopsis thaliana. TNT is toxic and highly resistant to biodegradation in the environment, raising both health and environmental concerns. Two GSTs, GST-U24 and GST-U25, are upregulated in response to TNT treatment, and expressed predominantly in the root tissues; the site of TNT location following uptake. Plants overexpressing GST-U24 and GST-U25 exhibited significantly enhanced ability to withstand and detoxify TNT, and remove TNT from contaminated soil. Analysis of the catalytic activities of these 2 enzymes revealed that they form 3 TNT-glutathionyl products. Of particular interest is 2-glutathionyl-4,6-dinitrotoluene as this represents a potentially favorable step toward subsequent degradation and mineralization of TNT. We demonstrate how GSTs fit into what is already known about pathways for TNT detoxification, and discuss the short and longer-term fate of TNT conjugates in planta.  相似文献   

14.
Glutathione S-transferases (GSTs) are a group of detoxification enzymes that catalyze the nucleophilic addition of glutathione to a wide variety of endogenous and xenobiotic compounds. In this study, GSTs were purified from four field populations of Bactrocera dorsalis with different insecticide susceptibilities by glutathione-agarose affinity chromatography. The populations were collected from Dongguan (DG) and Guangzhou (GZ) of the Guangdong Province, Haikou of the Hainan province (HN), and Kunming of the Yunnan province (YN), China. Differences in GST characteristics among the four populations were studied using purified enzyme samples through comparative SDS-PAGE, kinetic, and inhibition experiments. The specific activities of the purified enzymes were similar, but the purification yield of the GZ population (31.54%) was the lowest. SDS-PAGE analysis showed only one band at approximately 23 kDa for these four populations. Kinetic analyses showed that the affinities of the purified GSTs from the GZ and YN populations for 1-chloro-2.4-dinitrobenzene (CDNB) were much higher than those of GSTs from the other two populations, whereas the HN population had the highest catalytic capability in terms of V(max) value. The optimum temperature for CDNB conjugation was 37 °C and the optimum pH was 7.5 in all four populations. Inhibition kinetics showed that ethacrynic acid, diethyl maleate, tetraethylthiuram disulfide, curcumin, bromosulfalein, and β-cypermethrin had excellent inhibitory effects on GSTs in the four populations of B. dorsalis, but the low inhibitory effects of malathion and avermectin did not differ between populations. These results suggest that GSTs may have a role in detoxification of β-cypermethrin in B. dorsalis.  相似文献   

15.
GSTs (glutathione transferases) are a multifunctional group of enzymes, widely distributed and involved in cellular detoxification processes. In the xenobiotic-degrading bacterium Ochrobactrum anthropi, GST is overexpressed in the presence of toxic concentrations of aromatic compounds such as 4-chlorophenol and atrazine. We have determined the crystal structure of the GST from O. anthropi (OaGST) in complex with GSH. Like other bacterial GSTs, OaGST belongs to the Beta class and shows a similar binding pocket for GSH. However, in contrast with the structure of Proteus mirabilis GST, GSH is not covalently bound to Cys10, but is present in the thiolate form. In our investigation of the structural basis for GSH stabilization, we have identified a conserved network of hydrogen-bond interactions, mediated by the presence of a structural water molecule that links Ser11 to Glu198. Partial disruption of this network, by mutagenesis of Ser11 to alanine, increases the K(m) for GSH 15-fold and decreases the catalytic efficiency 4-fold, even though Ser11 is not involved in GSH binding. Thermal- and chemical-induced unfolding studies point to a global effect of the mutation on the stability of the protein and to a central role of these residues in zippering the terminal helix of the C-terminal domain to the starting helix of the N-terminal domain.  相似文献   

16.
Protein engineering and design provide excellent tools to investigate the principles by which particular structural features relate to the mechanisms that underlie the biological function of a protein. In addition to studies aimed at dissecting the communication pathways within enzymes, recent advances in protein engineering approaches make it possible to generate enzymes with increased catalytic efficiency and specifically altered or newly introduced functions. Here, two approaches using state-of-the-art protein design and engineering are described in detail to demonstrate how key features of the myosin motor can be changed in a specific and predictable manner. First, it is shown how replacement of an actin-binding surface loop with synthetic sequences, whose flexibility and charge density is varied, can be employed to manipulate the actin affinity, the catalytic activity and the efficiency of coupling between actin- and nucleotide-binding sites of myosin motor constructs. Then the use of pre-existing molecular building blocks, which are derived from unrelated proteins, is described for manipulating the velocity and even the direction of movement of recombinant myosins.  相似文献   

17.
18.
Plant glutathione transferases   总被引:5,自引:0,他引:5  
Dixon DP  Lapthorn A  Edwards R 《Genome biology》2002,3(3):reviews300-reviews300410
The soluble glutathione transferases (GSTs, EC 2.5.1.18) are encoded by a large and diverse gene family in plants, which can be divided on the basis of sequence identity into the phi, tau, theta, zeta and lambda classes. The theta and zeta GSTs have counterparts in animals but the other classes are plant-specific and form the focus of this article. The genome of Arabidopsis thaliana contains 48 GST genes, with the tau and phi classes being the most numerous. The GST proteins have evolved by gene duplication to perform a range of functional roles using the tripeptide glutathione (GSH) as a cosubstrate or coenzyme. GSTs are predominantly expressed in the cytosol, where their GSH-dependent catalytic functions include the conjugation and resulting detoxification of herbicides, the reduction of organic hydroperoxides formed during oxidative stress and the isomerization of maleylacetoacetate to fumarylacetoacetate, a key step in the catabolism of tyrosine. GSTs also have non-catalytic roles, binding flavonoid natural products in the cytosol prior to their deposition in the vacuole. Recent studies have also implicated GSTs as components of ultraviolet-inducible cell signaling pathways and as potential regulators of apoptosis. Although sequence diversification has produced GSTs with multiple functions, the structure of these proteins has been highly conserved. The GSTs thus represent an excellent example of how protein families can diversify to fulfill multiple functions while conserving form and structure.  相似文献   

19.
Glutathione transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes and endogenous metabolism. The distribution of fungal-specific class A GSTs was investigated in saprotrophic fungi revealing a recent diversification within this class. Biochemical characterization of eight GSTFuA isoforms from Phanerochaete chrysosporium and Coprinus cinereus demonstrated functional diversity in saprotrophic fungi. The three-dimensional structures of three P. chrysosporium isoforms feature structural differences explaining the functional diversity of these enzymes. Competition experiments between fluorescent probes, and various molecules, showed that these GSTs function as ligandins with various small aromatic compounds, derived from lignin degradation or not, at a L-site overlapping the glutathione binding pocket. By combining genomic data with structural and biochemical determinations, we propose that this class of GST has evolved in response to environmental constraints induced by wood chemistry.  相似文献   

20.
The use of plants to reclaim contaminated soils and groundwater, known as phytoremediation, is a promising biotechnological strategy which has gained a lot of attention in the last few years. Plants have evolved sophisticated detoxification systems against the toxin chemicals: following the uptake, the compounds are activated so that certain functional groups can conjugate hydrophilic molecules, such as thiols. The resulting conjugates are recognized by the tonoplast transporters and sequestered into the vacuoles. The xenobiotic conjugation with glutathione is mediated by enzymes which belong to the superfamily of glutathione S-transferases (GSTs) catalyzing the nucleophylic attack of the sulphur of glutathione on the electrophilic groups of the cytotoxic substrates therefore playing a crucial role in their degradation. This study was designed to identify the putative correlation between structural and functional characteristics of plant GST classes belonging to different plant species. Consequently, the protein sequences of the expressed GSTs have been retrieved from UniGene, classified and then analyzed in order to assess the evolutionary trend and to predict secondary structure. Moreover, the fingerprint analysis was performed with SCAN Prosite in the attempt to correlate meaningful signature profile and biological information. The results evidenced that all the soluble GSTs have a tendency to assume the α-helix secondary structure followed by random coil and β-sheet. The fingerprint analysis revealed that specific signature profiles related mainly to protein phosphorylation are in the GST classes of all considered species thus suggesting that they might be subjected to reversible activation by phosphorylation-mediated regulation. This approach provides the knowledge of the relationship between presence of conserved signature profile and biological function in the view of future selection of GSTs which might be employed in either mutagenesis or genetic engineering studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号