首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
ABSTRACT

The input of environmental time cues and expression of circadian activity rhythms may change with aging. Among nonphotic zeitgebers, social cues from conspecific vocalizations may contribute to the stability and survival of individuals of social species, such as nonhuman primates. We evaluated aging-related changes on social synchronization of the circadian activity rhythm (CAR) in a social diurnal primate, the common marmoset. The activity of 18 male marmosets was recorded by actiwatches in two conditions. (1) Experimental – 4 young adult (5 ± 2 yrs of age) and 4 older (10 ± 2 yrs of age) animals maintained under LD 12/12 h and LL in a room with full insulation for light but only partial insulation for sound from vocalizations of conspecifics maintained outdoors in the colony; and (2) Control – 10 young adult animals maintained outdoors in the colony (5 animals as a control per age group). In LL, the CAR of young adults showed more stable synchronization with controls. Among the aged marmosets, two free-ran with τ > 24 h, whereas the other two showed relative coordination during the first 30 days in LL, but free-ran thereafter. These differences were reflected in the “social” phase angles (ψon and ψoff ) between rhythms of experimental and control animal groups. Moreover, the activity patterns of aged animals showed lower social synchrony with controls compared to young adults, with the time lags of the time series between each experimental group and control group being negative in aged and positive in young adult animals (t-test, p < 0.05). The index of stability of the CAR showed no differences according to age, while the intradaily variability of the CAR was higher in the aged animals during LD-resynchronization, who took additional days to resynchronize. Thus, the social modulation on CAR may vary with age in marmosets. In the aged group, there was a lower effect of social synchronization, which may be associated with aging-related changes in the synchronization and generation of the CAR as well as in system outputs.  相似文献   

2.
Abstract. Along a stable temperature gradient and under a LD 12:12 h cycle, nurse workers of the ant Camponotus mus Roger 1863 (Hymenoptera: Formicidae) select for the brood two different temperatures daily: 30.8°C at the middle of the light period (circadian phase = 90°), and 27.5°C 8 h later, during the dark period (circadian phase = 210°), this rhythm being of endogenous nature.When a 24 h temperature cycle was superimposed along the thermal gradient, so that the immobile brood experienced a temperature transition as they receive when translocated by nurses (8 h at 30.8°C and 16 h at 27.5°C), no brood translocations occurred.The thermal cycle masked the rhythm of brood translocation when temperature fitted the daily pattern expected by nurses.When the same temperature cycle was presented with a phase-advance, nurses did not tolerate the early thermal increase and removed the brood as temperature rose.However, when workers experienced this new phase relationship between light and temperature cycles for more than 10 days, brood translocations were suppressed.Records under constant conditions of light and temperature indicated that the overt rhythm was locked-on to the expected early increase in temperature, so that the temperature cycle dominated over the LD cycle in resetting brood-carrying activity.  相似文献   

3.
Natural selection should lead animals to use social cues (SC) when they are useful, and disregard them when they are not. Theoretical investigation predicts that individuals should thus employ social learning ‘strategies’, but how might such context specificity be achieved on a proximate level? Operant conditioning, whereby the use of SC is reinforced through rewarding results, provides a potential mechanism. We investigate the role of reinforcement in joining behaviour in bumble-bees, Bombus terrestris. When bees visit unfamiliar flower species, they prefer to probe inflorescences where others are also foraging, and here we show that such behaviour is promoted through experience when conspecific presence reliably predicts reward. Our findings highlight a straightforward, but rarely discussed, mechanism by which animals can be selective about when to use SC.  相似文献   

4.
Research on social learning may be of use in the conservation of primates, especially great apes, through (a) promoting their public image, (b) identifying specific adaptations, and (c) devising reintroduction training programs. We surveyed all the instigated social learning studies in primates published since 1950 in order to assess their usefulness to devise reintroduction training programs. We identified 99 publications containing 130 data sets from 27 species of primates. Great apes produced significantly more positive social learning effects than either cercopithecines or cebids. There was also an enhanced social learning effect when skilled demonstrators were used. Our survey indicates that the scientific understanding of many aspects of primate social learning relevant to conservation, including its function, learning spatial route plotting, food and sleeping site location, predator avoidance and detection, and the effect of model and tutee status, would benefit from greater research. Future instigated studies on primate social learning would be most informative for reintroduction if they included ecologically valid tasks presented to 2 similarly composed social groups, one of which functioned as a control, i.e., without being exposed to a model.  相似文献   

5.
    
The circadian system is organized in a hierarchy of multiple oscillators, with the suprachiasmatic nucleus (SCN) as the master oscillator in mammals. The SCN is formed by a group of coupled cell oscillators. Knowledge of this coupling mechanism is essential to understanding entrainment and the expression of circadian rhythms. Some authors suggest that light-dark (LD) cycles with periods near the limit of entrainment may be good models for promoting internal desynchronization, providing knowledge about the coupling mechanism. As such, we evaluated the circadian activity rhythm (CAR) pattern of marmosets in LD cycles at lower limits of entrainment in order to study induced internal dissociation. To that end, two experiments were conducted: (1) 6 adult females were under symmetrical LD cycles T21, T22 and T21.5 for 60, 35 and 48 days, respectively; and (2) 4 male and 4 female adults were under T21 for 24 days followed by 18 days of LL, back to T21 for 24 days, followed by 14 days of LL. The CAR of each animal was continuously recorded. In experiment 1, vocalizations were also recorded. Under Ts shorter than 24 days, a dissociation pattern was observed for CAR and vocalizations. Two simultaneous circadian components emerged, one with the same period as the LD cycle, called the light-entrained component, and the other in free-running, denominated the non-light-entrained component. Both components were displayed in the CAR for all the animals in T21, five animals (83.3%) in T21.5 and two animals (33.3%) in T22. Our results are in accordance with the multioscillatory nature of the circadian system. Dissociation is partial synchronization to the LD cycle, with at least one group of oscillators synchronized by relative coordination and masking, while another group of oscillators free runs, but is also masked by the LD cycle. Since only T21 promoted the emergence of both circadian components in the circadian rhythms of all marmosets, it was considered the promoter period of circadian rhythm dissociation in this species, and is proposed as a good animal model for forced desynchronization in non-human diurnal primates.  相似文献   

6.
    
ABSTRACT

Honey bees have a remarkable sense of time and individual honey bee foragers are capable of adjusting their foraging activity with respect to the time of food availability. Although, there is compelling experimental evidence that foraging behavior is guided by the circadian clock, nothing is known about the underlying molecular mechanisms. Here we present for the first time a study that explores whether time-restricted foraging under natural light-dark (LD) condition affects the molecular clock in honey bees. Food was presented in an enclosed flight chamber (12 m × 4 m × 4 m) either for 2 hours in the morning or 2 hours in the afternoon for several consecutive days and daily cycling of the two major clock genes, cryptochrome2 (cry2) and period (per), were analyzed for three different parts of the nervous system involved in feeding-related behaviors: brain, subesophageal ganglion (SEG), and the antennae with olfactory sensory neurons. We found that morning and afternoon trained foragers showed significant phase differences in the cycling of both clock genes in all three tissues. In addition, the phase differences were more pronounced when the feeder was scented with the common plant odor, linalool. Together our findings suggest that foraging time may function as a Zeitgeber that might have the capability to modulate the light entrained molecular clock.  相似文献   

7.
Recently, several researchers have highlighted the neglect of social behaviors relative to food-related behaviors in experimental research on social learning in primates, despite the significant number of apparent social traditions reported in the field. Here we aim to highlight the discrepancy between the relative number of nonfood-related behavioral traditions reported in the wild and food-related ones, and the almost exclusive investigation of food-related behaviors in an experimental context. First we discuss aspects of social and communicative customs that make them especially interesting. Then we consider reasons why experimental approaches are crucial to developing a full understanding of behavioral traditions observed in the wild. We report the results of a systematic literature survey in which we assessed the perceived discrepancy quantitatively. We also argue that the existing experimental literature, with its typical reliance on food as a motivator, may not be sufficient to elucidate the mechanisms underlying nonfood traditions, such as social conventions. Finally, we suggest new directions for the experimental investigation of social learning in primates, hoping to stimulate experimental research investigating social and communicative behavioral traditions.  相似文献   

8.
The ability of prey to observe and learn to recognize potential predators from the behaviour of nearby individuals can dramatically increase survival and, not surprisingly, is widespread across animal taxa. A range of sensory modalities are available for this learning, with visual and chemical cues being well-established modes of transmission in aquatic systems. The use of other sensory cues in mediating social learning in fishes, including mechano-sensory cues, remains unexplored. Here, we examine the role of different sensory cues in social learning of predator recognition, using juvenile damselfish (Amphiprion percula). Specifically, we show that a predator-naive observer can socially learn to recognize a novel predator when paired with a predator-experienced conspecific in total darkness. Furthermore, this study demonstrates that when threatened, individuals release chemical cues (known as disturbance cues) into the water. These cues induce an anti-predator response in nearby individuals; however, they do not facilitate learnt recognition of the predator. As such, another sensory modality, probably mechano-sensory in origin, is responsible for information transfer in the dark. This study highlights the diversity of sensory cues used by coral reef fishes in a social learning context.  相似文献   

9.
During mating events, females of many primate species produce loud and distinct vocalizations known as 'copulation calls'. The adaptive significance of these signals is considered to be in promoting the caller's direct reproductive success. Here, we investigated copulation calling in bonobos (Pan paniscus), a species in which females produce these vocalizations during sexual interactions with partners of both sexes. Females were more likely to call when mating with males than with females. We also observed a positive relationship between the likelihood of calling and partner rank, regardless of partner sex. Sexual activity generally increased with swelling size (an indicator of reproductive state) and, during their peak swelling, females called more with male than with female partners. Female bonobos are unusual among the non-human primates in terms of their heightened socio-sexuality. Our results suggest that in this species, copulation calls have undergone an evolutionary transition from a purely reproductive to a more general social function, reflecting the intrinsic evolutionary links between vocal behaviour and social cognition.  相似文献   

10.
    
“Squirrel-monkeys occur in a considerable number of slightly different forms, but all are built upon a similar body plan and have a basic color scheme. One of the larger races—from inner Perú—is also the most colorful and one of the brightest colored of all mammals. It may be taken as a point of departure. The top of the head and the upper and outer parts of the body and the upper side of the basal half of the tail are a vivid green, with a pepper and salt effect of yellow and gray. The face is pure white except for black spectacles, muzzle and chin; the throat, chest, underside, insides of limbs, and the underside of the basal half of the tail are brilliant daffodil yellow. The terminal half of the tail is jet black and rather bushy. The flesh of the hands is pale pink. Other races vary in the intensity of the green and yellow, so that some may be olive brown above and white below, and in the amount and arrangement of the black areas on the face and the tip of the tail. Some have almost naked ears, others have these organs clothed in short fur, and still others bear thereupon long tufts or fringes. All these variations seem to blend into the other geographically . . . some of these pure color variations may constitute valid regional subspecies or even species. . . .” I. T. Sanderson1 (p. 77).  相似文献   

11.
12.
    
ABSTRACT

Insects express diverse behavioral rhythms synchronized to environmental cycles. While circadian entrainment to light–dark cycles is ubiquitous in living organisms, synchronization to non-photic cycles may be critical for hematophagous bugs that depend on rhythmic hosts. The purpose was to determine whether Triatoma infestans are capable of synchronizing to the circadian rhythms of potential hosts with temporally distinct activity patterns; and, if so, if this synchronization occurs through masking or entrainment. Precise synchronization with the food source may be critical for the insects’ survival due to the specific predatory or defensive nature of each host. Kissing bugs were housed in a compartment in constant dark, air-flow-connected to another compartment with a nocturnal or a diurnal host; both hosts were synchronized to a light–dark cycle. The activity rhythms of kissing bugs were modulated by the daily activity rhythms of the vertebrates. Effects were a decrease in the endogenous circadian period, independent of the host being nocturnal or diurnal; in some cases relative coordination occurred and in others synchronization was clearly achieved. Moreover, splitting and bimodality arose, phenomena that were also affected by the host presence. The results indicate that T. infestans were able to detect the non-photic cycle of their potential hosts, an ability that surely facilitates feeding and hinders predation risk. Understanding triatomines behavior is of fundamental importance to the design of population control methods.  相似文献   

13.
To date, most research in the field of biological rhythms has been performed on nocturnal rodents under laboratory conditions. This research has made much progress in recent years. It is now time to investigate the adaptive value of the studied molecular mechanisms under natural conditions. Here we review relevant studies of rodent activity patterns. We also review a case study of temporal partitioning between spiny mice. We conclude that the response to environmental stimuli, using a system composed of a rigid master circadian oscillator and more flexible mechanisms such as peripheral oscillators with weak coupling, masking responses, and downstream switching mechanisms, is adaptive since it enables an animal to reset its activity phase without the cost of shifting the phase of the entire circadian system. We suggest that these mechanisms play a significant role in determining activity patterns under natural conditions, and are important for understanding the ecology and evolution of activity rhythms.  相似文献   

14.
    
Much work has been done to further our understanding of the mechanisms that underlie the diversity of primate social organizations, but none has addressed the limits to that diversity or the question of what causes species to either form or not form social networks. The fact that all living primates typically live in social networks makes it highly likely that the last common ancestor of living primates already lived in social networks, and that sociality formed an integral part of the adaptive nature of primate origins. A characterization of primate sociality within the wider mammalian context is therefore essential to further our understanding of the adaptive nature of primate origins. Here we determine correlates of sociality and nonsociality in rodents as a model to infer causes of sociality in primates. We found sociality to be most strongly associated with large-bodied arboreal species that include a significant portion of fruit in their diet. Fruits and other plant products, such as flowers, seeds, and young leaves, are patchily distributed in time and space and are therefore difficult to find. These food resources are, however, predictable and dependable when their location is known. Hence, membership in a social unit can maximize food exploitation if information on feeding sites is shared. Whether sociality evolved in the primate stem lineage or whether it was already present earlier in the evolution of Euarchontoglires remains uncertain, although tentative evidence points to the former scenario. In either case, frugivory is likely to have played an important role in maintaining the presence of a social lifestyle throughout primate evolution.  相似文献   

15.
In ant colonies a large proportion of individuals remain inside nests for most of their lives and come out only when necessary. It is not clear how, in a nest of several thousand individuals, information about local time is communicated among members of the colony. Central to this seem to be circadian clocks, which have an intrinsic ability to keep track of local time by entraining to environmental light-dark, temperature, and social cycles. Here, the authors report the results of their study aimed at understanding the role of cyclic social interactions in circadian timekeeping of a day-active species of carpenter ant Camponotus paria. The authors found that daily social interactions with visitors (worker ants) was able to synchronize the circadian locomotor activity rhythm of host worker ants and queens, in one-on-one (pair-wise) and multi-individual (group-wise) interactions. Interestingly, the outcome of cyclic social interactions was context specific; when visitor workers socially interacted with host workers one-on-one, host workers considered the time of interaction as subjective day, but when visitor workers interacted with a group of workers and queens, the hosts considered the time of interaction as subjective night. These results can be taken to suggest that members of the ant species C. paria keep track of local time by socially interacting with workers (foragers) who shuttle in and out of the colony in search of food. (Author correspondence: )  相似文献   

16.
    
Studies on primate tool‐use often involve the use of baseline conditions, as they allow for the examination of any differences in the subjects' behavior before and after the introduction of a tool‐use task. While these baseline conditions can be powerful for identifying the relative contributions of individual and social learning for the acquisition of tool‐use behaviors in naïve (usually captive) subjects, many have criticized them for being too short, and not allowing enough time for the behavior to develop spontaneously. Furthermore, some wild tool‐use behaviors such as chimpanzee nut‐cracking require animals to manipulate and familiarize themselves with the materials of the behavior within a “sensitive learning period” before it develops later on in life. One solution to this problem is to implement long‐term baselines, in which, with collaboration with zoological institutions, the materials of the behavior are left in the enclosure for an extended period. The keepers would then be asked not to demonstrate or train the animals in the target behavior, but to report back to the researchers if they observe the behavior emerge during this extended period. Alongside keeper reports, video cameras could be installed in the enclosure to minimize the chance of false negatives and to allow for coding and inter‐rater reliability to be carried out on the videos. These long‐term baselines therefore provide extended enrichment opportunities for the animals, alongside allowing the zoological institution to publicize their involvement with the study and guests to observe animals interacting with different testing apparatuses and tools. Finally, long‐term baselines can provide invaluable insight on the individual and social learning abilities of primates as well as the potential development stages and sensitive learning periods required for specific behaviors.  相似文献   

17.
Synchronized state of activity and rest might be attained by mechanisms of entrainment and masking. Most zeitgebers not only act to entrain but also to mask circadian rhythms. Although the light-dark (LD) cycle is the main zeitgeber of circadian rhythms in marmosets, social cues can act as weaker zeitgebers. Evidence on the effects of social entrainment in marmosets has been collected in isolated animals or in pairs where activity is not individually recorded. To characterize the synchronization between the daily activity profiles of individuals in groups under LD conditions, the motor activity of animals from five groups was continuously monitored using actiwatches for 15 days during the 5th, 8th, and 11th months of life of juveniles. Families consisting of twins (4 ♂♀/1 ♂♂) and their parents were maintained under controlled lighting (LD 12:12?h), temperature, and humidity conditions. Synchronization was evaluated through the synchrony between the circadian activity profiles obtained from the Pearson correlation index between possible pairs of activity profiles in the light and dark phases. We also calculated the phase-angle differences between the activity onset of one animal in relation to the activity onset of each animal in the group (ψon). A similar procedure was performed for activity offset (ψoff). By visual analysis, the correlation between the activity profiles of individuals within each family was stronger than that of individuals from different families. A mixed-model analysis showed that within the group, the correlation was stronger between twins than between twins and their parents in all families, except for the family in which both juveniles were males. Because a twin is an important social partner for juveniles, a sibling is likely to have a stronger influence on its twin’s activity rhythm than other family members. Considering only the light phase, the second strongest correlation was observed between the activity profiles of the individuals in the reproductive pair. Regarding the parameters ψon and ψoff, the juvenile/juvenile dyad had lower values than the other dyads, but these differences did not reach statistical significance in relation to all dyads. Comparing the results of the ψon and ψoff, and correlation indices, we suggest that the latter could detect differences between the animals that were not observed in the results of the phase-angle differences. These differences could be related to changes that occur during the active phase but not only in a particular phase, such as the temporal changes during the activity phase that characterize unimodal or bimodal patterns. Based on the differences in the correlations between individuals subjected to the same LD routine, we suggest that social cues modulate the circadian activity profiles of marmosets as a result of interactions between the animals within each group. Future studies are necessary to characterize the mechanisms of synchronization that are involved in this social modulation. (Author correspondence: carolina@cb.ufrn.br)  相似文献   

18.
ABSTRACT. The purpose of this study was to explore the olfactory recognition mechanisms used by individual subordinate male cockroaches, Nauphoeta cinerea (Olivier), in a dominance hierarchy. Results of two independent sets of experiments, one using an olfactometer and the other using an arena, suggest that olfactory cues are important to males. Subordinate males did not avoid dominant male odour in an olfactometer but could discriminate between the odours of familiar and unfamiliar individual dominant males, preferring the odour of the dominant male with which they had previous social contact. Since test subordinates did not avoid dominant male odours in the olfactometer, it is possible that the distance an individual remains from a dominant is important. To test this, individual dominant and subordinate males were tethered in the centre of an arena. Subordinate males were introduced into the arena and allowed to approach the tethered male. They approached tethered dominants and subordinates differently, and tended to keep away from the dominants. Tethered males unfamiliar to the test animals were avoided as well.  相似文献   

19.
20.
The timing and pattern of mammalian behavioral activities are regulated by an evolutionary optimized interplay of the genetically based biological (circadian) clock located in the brain’s suprachiasmatic nuclei and direct responses to environmental factors that superimpose and thus mask the clock-mediated effects, the most important of which is the photically induced phase-setting (synchronization) of the circadian rhythmicity to the 24-hour solar day. In wild and captive animals living under the natural conditions prevailing in their habitat, to date, only a few attempts have been made to analyze the role of these two regulatory mechanisms in the species’ adaptation to the time structure prevailing in their habitat. We studied the impact of housing conditions and season on the daily timing and pattern of activity in Mexican spider monkeys (Ateles geoffroyi). To this end, we carried out long-term activity recordings with Actiwatch® AW4 accelerometer/data-logger devices in 11 adult Ateles living under identical natural lighting and climatic conditions in either a large wire netting cage or a 0.25?ha forest enclosure in the primatological field station of Veracruz State University near Catemaco, Mexico. In a gravid female in the forest enclosure, we obtained first-hand information on the effect of late pregnancy and parturition on the monkey’s activity rhythm. The Ateles behaved strictly diurnal and undertook about 90% of daily total activity during this activity time. Due to a higher second activity peak in late afternoon, the bimodal activity pattern was more pronounced in monkeys living in the forest enclosure. Although the spider monkeys kept there had an earlier activity onset and morning activity peak than their conspecifics in the cage, no consistent differences were found in the parameters characterizing the phase-setting of the circadian system to the environmental 24-h periodicity, either by comparison or correlation with the external time markers of sunrise (SR) and sunset (SS). The most obvious effect of late pregnancy, parturition and lactation was a distinct reduction of the activity level during the week of parturition and the next. Seasonal variations in the form of significant differences between the long-day summer half year and the short-day winter half year were established in the phase-angle differences of the morning activity peak to SR, in the evening activity peak and activity offset to SS, as well as in the activity time and the peak-to-peak interval, but not in the phase position of activity onset to SR or in the height of the morning and evening activity peak. These findings in combination with a high variability of the phase angle differences indicate that in A. geoffroyi, a relatively weak circadian component and strong masking direct effects of environmental factors are involved in the regulation of the daily activity rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号