首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of RecA, an important eubacterial protein involved in recombination and repair, involves the transition from an inactive filament in the absence of DNA to an active filament formed in association with DNA and ATP. The structure of the inactive filament was first established in Escherichia coli RecA (EcRecA). The interaction of RecA with non-hydrolysable ATP analogues and ADP has been thoroughly characterized and the DNA binding loops visualized based on the crystal structures of the RecA proteins from Mycobacterium tuberculosis (MtRecA) and Mycobacterium smegmatis (MsRecA). A switch residue, which triggers the transformation of the information on ATP binding to the DNA binding regions, has been identified. The 20-residue C-terminal stretch of RecA, which is disordered in all other relevant crystal structures, has been defined in an MsRecA-dATP complex. The ordering of the stretch is accompanied by the generation of a new nucleotide binding site which can communicate with the original nucleotide binding site of an adjacent molecule in the filament. The plasticity of MsRecA and its mutants involving the switch residue has been explored by studying crystals grown under different conditions at two different temperatures and, in one instance, at low humidity. The structures of these crystals and those of EcRecA and Deinococcus radiodurans RecA (DrRecA) provide information on correlated movements involving different regions of the molecule. These correlated movements appear to be important in the allosteric transitions of RecA during its action.  相似文献   

2.
RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg(+2)-ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single-stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA-ADP complex, complexes with ATPgammaS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP-AlF4 confirms an expansion of the P-loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPgammaS rather than ADP-AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA-binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition.  相似文献   

3.
We have used electron microscopy to examine the two major conformational states of the helical filament formed by the RecA protein of Escherichia coli. The compressed filament, formed in the absence of a nucleotide cofactor either as a self-polymer or on a single-stranded DNA molecule, is characterized in solution by about 6.1 subunits per turn of a 76 A pitch helix, and appears to be inactive with respect to all RecA activity. The active state of the filament, formed with ATP or an ATP analog on either a single or double-stranded DNA substrate, has about 6.2 subunits per turn of a 94 A pitch helix. Measurements of the contour length of RecA-covered single-stranded DNA circles in ice, formed in the absence of nucleotide cofactor, indicate that each RecA subunit binds five bases, in contrast to the three bases or base-pairs per subunit in the active state. The different stoichiometries of DNA binding suggests that the two polymeric forms are not interconvertible, as has been suggested on biochemical grounds. A three-dimensional reconstruction of the inactive state shows the same general features as the 83 A pitch filament present in the RecA crystal. This structural similarity and the fact that the crystal does not contain ATP or DNA suggests that the crystal structure is more similar to the compressed filament than the active, extended filament.  相似文献   

4.
The X-ray crystal structure of RadB from Thermococcus kodakaraensis KOD1, an archaeal homologue of the RecA/Rad51 family proteins, have been determined in two crystal forms. The structure represents the core ATPase domain of the RecA/Rad51 proteins. Two independent molecules in the type 1 crystal were roughly related by 7-fold screw symmetry whereas non-crystallographic 2-fold symmetry was observed in the type 2 crystal. The dimer structure in the type 1 crystal is extended to construct a helical assembly, which resembles the filamentous structures reported for other RecA/Rad51 proteins. The molecular interface in the type 1 dimer is formed by facing a basic surface patch of one monomer to an acidic one of the other. The empty ATP binding pocket is located at the interface and barely concealed from the outside similarly to that in the active form of the RecA filament. The model assembly has a positively charged belt on one surface bordering the helical groove suitable for facile binding of DNA. Electron microscopy has revealed that, in the absence of ATP and DNA, RadB forms a filament with a similar diameter to that of the hypothetical assembly, although its helical properties were not confirmed.  相似文献   

5.
Wigle TJ  Lee AM  Singleton SF 《Biochemistry》2006,45(14):4502-4513
The roles of the RecA protein in the survival of bacteria and the evolution of resistance to antibiotics make it an attractive target for inhibition by small molecules. The activity of RecA is dependent on the formation of a nucleoprotein filament on single-stranded DNA that hydrolyzes ATP. We probed the nucleotide binding site of the active RecA protein using modified nucleotide triphosphates to discern key structural elements of the nucleotide and of the binding site that result in the activation of RecA for NTP hydrolysis. Our results show that the RecA-catalyzed hydrolysis of a given nucleotide triphosphate or analogue thereof is exquisitely sensitive to certain structural elements of both the base and ribose moieties. Furthermore, our ligand-based approach to probing the RecA ATP binding site indicated that the binding of nucleotides by RecA was found to be conformationally selective. Using a binding screen that can be readily adapted to high-throughput techniques, we were able to segregate nucleotides that interact with RecA into two classes: (1) NTPs that preferentially bind the active nucleoprotein filament conformation and either serve as substrates for or competitively inhibit hydrolysis and (2) nonsubstrate NTPs that preferentially bind the inactive RecA conformation and facilitate dissociation of the RecA-DNA species. These results are discussed in the context of a recent structural model for the active RecA nucleoprotein filament and provide us with important information for the design of potent, conformationally selective modulators of RecA activities.  相似文献   

6.
Mycobacterium smegmatis RecA and its nucleotide complexes crystallize in three different, but closely related, forms characterized by specific ranges of unit cell dimensions. The six crystals reported here and five reported earlier, all grown under the same or very similar conditions, belong to these three forms, all in space group P6(1). They include one obtained by reducing relative humidity around the crystal. In all crystals, RecA monomers form filaments around a 6(1) screw axis. Thus, the c-dimension of the crystal corresponds to the pitch of the RecA filament. As reported for Escherichia coli RecA, the variation in the pitch among the three forms correlates well with the motion of the C-terminal domain of the RecA monomers with respect to the main domain. The domain motion is compatible with formation of inactive as well as active RecA filaments involving monomers with a fully ordered C domain. It does not appear to influence the movement upon nucleotide-binding of the switch residue, which is believed to provide the trigger for transmitting the effect of nucleotide binding to the DNA-binding region. Interestingly, partial dehydration of the crystal results in the movement of the residue similar to that caused by nucleotide binding. The ordering of the DNA-binding loops, which present ensembles of conformations, is also unaffected by domain motion. The conformation of loop L2 appears to depend upon nucleotide binding, presumably on account of the movement of the switch residue that forms part of the loop. The conformations of loops L1 and L2 are correlated and have implications for intermolecular communications within the RecA filament. The structures resulting from different orientations of the C domain and different conformations of the DNA-binding loops appear to represent snapshots of the RecA at different phases of activity, and provide insights into the mechanism of action of RecA.  相似文献   

7.
RecA protein is a crucial and central component of the homologous recombination and DNA repair machinery. Despite numerous studies on the protein, several issues concerning its action, including the allosteric regulation mechanism have remained unclear. Here we report, for the first time, a crystal structure of a complex of Mycobacterium smegmatis RecA (MsRecA) with dATP, which exhibits a fully ordered C-terminal domain, with a second dATP molecule bound to it. ATP binding is an essential step for all activities of RecA, since it triggers the formation of active nucleoprotein filaments. In the crystal filament, dATP at the first site communicates with a dATP of the second site of an adjacent subunit, through conserved residues, suggesting a new route for allosteric regulation. In addition, subtle but definite changes observed in the orientation of the nucleotide at the first site and in the positions of the segment preceding loop L2 as well as in the segment 102–105 situated between the 2 nt, all appear to be concerted and suggestive of a biological role for the second bound nucleotide.  相似文献   

8.
The crystal structures of Mycobacterium smegmatis RecA (RecA(Ms)) and its complexes with ADP, ATPgammaS, and dATP show that RecA(Ms) has an expanded binding site like that in Mycobacterium tuberculosis RecA, although there are small differences between the proteins in their modes of nucleotide binding. Nucleotide binding is invariably accompanied by the movement of Gln 196, which appears to provide the trigger for transmitting the effect of nucleotide binding to the DNA-binding loops. These observations provide a framework for exploring the known properties of the RecA proteins.  相似文献   

9.
Sequencing of the complete genome of Mycobacterium tuberculosis, combined with the rapidly increasing need to improve tuberculosis management through better drugs and vaccines, has initiated extensive research on several key proteins from the pathogen. RecA, a ubiquitous multifunctional protein, is a key component of the processes of homologous genetic recombination and DNA repair. Structural knowledge of MtRecA is imperative for a full understanding of both these activities and any ensuing application. The crystal structure of MtRecA, presented here, has six molecules in the unit cell forming a 61 helical filament with a deep groove capable of binding DNA. The observed weakening in the higher order aggregation of filaments into bundles may have implications for recombination in mycobacteria. The structure of the complex reveals the atomic interactions of ADP–AlF4, an ATP analogue, with the P-loop-containing binding pocket. The structures explain reduced levels of interactions of MtRecA with ATP, despite sharing the same fold, topology and high sequence similarity with EcRecA. The formation of a helical filament with a deep groove appears to be an inherent property of MtRecA. The histidine in loop L1 appears to be positioned appropriately for DNA interaction.  相似文献   

10.
11.
ATP-mediated conformational changes in the RecA filament   总被引:9,自引:0,他引:9  
The crystal structure of the E. coli RecA protein was solved more than 10 years ago, but it has provided limited insight into the mechanism of homologous genetic recombination. Using electron microscopy, we have reconstructed five different states of RecA-DNA filaments. The C-terminal lobe of the RecA protein is modulated by the state of the distantly bound nucleotide, and this allosteric coupling can explain how mutations and truncations of this C-terminal lobe enhance RecA's activity. A model generated from these reconstructions shows that the nucleotide binding core is substantially rotated from its position in the RecA crystal filament, resulting in ATP binding between subunits. This simple rotation can explain the large cooperativity in ATP hydrolysis observed for RecA-DNA filaments.  相似文献   

12.
Bacteriophage T4 provides an important model system for studying the mechanism of homologous recombination. We have determined the crystal structure of the T4 UvsX recombinase, and the overall architecture and fold closely resemble those of RecA, including a highly conserved ATP binding site. Based on this new structure, we reanalyzed electron microscopy reconstructions of UvsX-DNA filaments and docked the UvsX crystal structure into two different filament forms: a compressed filament generated in the presence of ADP and an elongated filament generated in the presence of ATP and aluminum fluoride. In these reconstructions, the ATP binding site sits at the protomer interface, as in the RecA filament crystal structure. However, the environment of the ATP binding site is altered in the two filament reconstructions, suggesting that nucleotide cannot be as easily accommodated at the protomer interface of the compressed filament. Finally, we show that the phage helicase UvsW completes the UvsX-promoted strand-exchange reaction, allowing the generation of a simple nicked circular product rather than complex networks of partially exchanged substrates.  相似文献   

13.
Escherichia coli RecA mediates homologous recombination, a process essential to maintaining genome integrity. In the presence of ATP, RecA proteins bind a single-stranded DNA (ssDNA) to form a RecA-ssDNA presynaptic nucleoprotein filament that captures donor double-stranded DNA (dsDNA), searches for homology, and then catalyzes the strand exchange between ssDNA and dsDNA to produce a new heteroduplex DNA. Based upon a recently reported crystal structure of the RecA-ssDNA nucleoprotein filament, we carried out structural and functional studies of the N-terminal domain (NTD) of the RecA protein. The RecA NTD was thought to be required for monomer-monomer interaction. Here we report that it has two other distinct roles in promoting homologous recombination. It first facilitates the formation of a RecA-ssDNA presynaptic nucleoprotein filament by converting ATP to an ADP-Pi intermediate. Then, once the RecA-ssDNA presynaptic nucleoprotein filament is stably assembled in the presence of ATPγS, the NTD is required to capture donor dsDNA. Our results also suggest that the second function of NTD may be similar to that of Arg243 and Lys245, which were implicated earlier as binding sites of donor dsDNA. A two-step model is proposed to explain how a RecA-ssDNA presynaptic nucleoprotein filament interacts with donor dsDNA.  相似文献   

14.
Xing X  Bell CE 《Biochemistry》2004,43(51):16142-16152
RecA catalyzes the DNA pairing and strand-exchange steps of homologous recombination, an important mechanism for repair of double-stranded DNA breaks. The binding of RecA to DNA is modulated by adenosine nucleotides. ATP increases the affinity of RecA for DNA, while ADP decreases the affinity. Previously, the crystal structures of E. coli RecA and its complex with ADP have been determined to resolutions of 2.3 and 3.0 A, respectively, but the model for the RecA-ADP complex did not include magnesium ion or side chains. Here, we have determined the crystal structures of RecA in complex with MgADP and MnAMP-PNP, a nonhydrolyzable analogue of ATP, at resolutions of 1.9 and 2.1 A, respectively. Both crystals grow in the same conditions and have RecA in a right-handed helical form with a pitch of approximately 82 A. The crystal structures show the detailed interactions of RecA with the nucleotide cofactors, including the metal ion and the gamma phosphate of AMP-PNP. There are very few conformational differences between the structures of RecA bound to ADP and AMP-PNP, which differ from uncomplexed RecA only in a slight opening of the P-loop residues 66-73 upon nucleotide binding. To interpret the functional significance of the structure of the MnAMP-PNP complex, a coprotease assay was used to compare the ability of different nucleotides to promote the active, extended conformation of RecA. Whereas ATPgammaS and ADP-AlF(4) facilitate a robust coprotease activity, ADP and AMP-PNP do not activate RecA at all. We conclude that the crystal structure of the RecA-MnAMP-PNP complex represents a preisomerization state of the RecA protein that exists after ATP has bound but before the conformational transition to the active state.  相似文献   

15.
The bacterial RecA protein has been the dominant model system for understanding homologous genetic recombination. Although a crystal structure of RecA was solved ten years ago, we still do not have a detailed understanding of how the helical filament formed by RecA on DNA catalyzes the recognition of homology and the exchange of strands between two DNA molecules. Recent structural and spectroscopic studies have suggested that subunits in the helical filament formed in the RecA crystal are rotated when compared to the active RecA-ATP-DNA filament. We examine RecA-DNA-ATP filaments complexed with LexA and RecX to shed more light on the active RecA filament. The LexA repressor and RecX, an inhibitor of RecA, both bind within the deep helical groove of the RecA filament. Residues on RecA that interact with LexA cannot be explained by the crystal filament, but can be properly positioned in an existing model for the active filament. We show that the strand exchange activity of RecA, which can be inhibited when RecX is present at very low stoichiometry, is due to RecX forming a block across the deep helical groove of the RecA filament, where strand exchange occurs. It has previously been shown that changes in the nucleotide bound to RecA are associated with large motions of RecA's C-terminal domain. Since RecX binds from the C-terminal domain of one subunit to the nucleotide-binding core of another subunit, a stabilization of RecA's C-terminal domain by RecX can likely explain the inhibition of RecA's ATPase activity by RecX.  相似文献   

16.
Nucleotide binding to RecA results in either the high-DNA affinity form (Adenosine 5'-triphosphate (ATP)-bound) or the more inactive protein conformation associated with a lower affinity for DNA (Adenosine 5'-diphosphate (ADP)-bound). Many of the key structural differences between the RecA-ATP and RecA-ADP bound forms have yet to be elucidated. We have used caged-nucleotides and difference FTIR in efforts to obtain a comprehensive understanding of the molecular changes induced by nucleotide binding to RecA. The photochemical release of nucleotides (ADP and ATP) from biologically inactive precursors was used to initiate nucleotide binding to RecA. Here we present ATP hydrolysis assays and fluorescence studies suggesting that the caged nucleotides do not interact with RecA before photochemical release. Furthermore, we now compare difference spectra obtained in H2O and D2O as our first attempt at identifying the origin of the vibrations influenced by nucleotide binding. The infrared data suggest that unique alpha-helical, beta structures, and side chain rearrangements are associated with the high- and low-DNA affinity forms of RecA. Difference spectra obtained over time isolate contributions arising from perturbations in the nucleotide phosphates and have provided further information about the protein structural changes involved in nucleotide binding and the allosteric regulation of RecA.  相似文献   

17.
Molecular dynamics simulations have been performed on solvated G-actin bound to ADP and ATP, starting with the crystal structure of the actin-DNase 1 complex, including a Ca2+ or Mg2+ ion at the high-affinity divalent cation-binding site. Water molecules have been found to enter the nucleotide-binding site (phosphate vicinity) along two pathways, from the side where the nucleotide base is exposed to water, as well as from the opposite side. The water channels suggest a "back-door" mechanism for ATP hydrolysis in which the phosphate is released to a side opposite that of nucleotide binding and unbinding. The simulations also reveal a propensity of G-actin to alter its crystallographic structure toward the filamentous structure. Domain movement closes the nucleotide cleft, the movement being more pronounced for bound Mg2+. The conformational change is interpreted as a response of the system to missing water molecules in the crystal structure. The structures arising in the simulations, classified according to nucleotide cleft separation and radius of gyration of the protein, fall into two distinct clusters: a cluster of states that are similar to the G-actin crystal structure, and a cluster of states with small cleft separation and with the subdomain 3/4 loop 264-273 detached from the protein. The latter states resemble the putative filamentous structure of actin, in which the loop connects the two strands of the actin filament.  相似文献   

18.
The motor of the membrane‐anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C‐terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide‐regulated FlaH binding to FlaI form the archaellar basal body core.  相似文献   

19.
Yun M  Zhang X  Park CG  Park HW  Endow SA 《The EMBO journal》2001,20(11):2611-2618
Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPASE: The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules.  相似文献   

20.
Archaeal flagella are unique structures that share functional similarity with bacterial flagella, but are structurally related to bacterial type IV pili. The flagellar accessory protein FlaH is one of the conserved components of the archaeal motility system. However, its function is not clearly understood. Here, we present the 2.2 Å resolution crystal structure of FlaH from the hyperthermophilic archaeon, Methanocaldococcus jannaschii. The protein has a characteristic RecA‐like fold, which has been found previously both in archaea and bacteria. We show that FlaH binds to immobilized ATP—however, it lacks ATPase activity. Surface plasmon resonance analysis demonstrates that ATP affects the interaction between FlaH and the archaeal motor protein FlaI. In the presence of ATP, the FlaH‐FlaI interaction becomes significantly weaker. A database search revealed similarity between FlaH and several DNA‐binding proteins of the RecA superfamily. The closest structural homologs of FlaH are KaiC‐like proteins, which are archaeal homologs of the circadian clock protein KaiC from cyanobacteria. We propose that one of the functions of FlaH may be the regulation of archaeal motor complex assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号