共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanadate can often bind to phosphoryl transfer enzymes to form a trigonal-bipyramidal structure at the active site. The enzyme-vanadate dissociation constants in these enzymes are much lower than those for phosphate. Therefore, enzyme-bound vanadate moieties are often considered as transition state analogues. To test whether the enzyme-vanadate complex is a true transition state analogue beyond the simple geometry and binding affinity arguments and whether the bond orders of the VO bonds in the complex approach those of the PO bonds in the transition state, the binding properties of vanadate in the Yersinia protein-tyrosine phosphatase (PTPase) and its T410A, D356N, W354A, R409K, and D356A mutants have been studied by steady-state kinetic measurements and by difference Raman measurements. The results of the kinetic measurements show no correlation between K(I) and kcat or kcat/K(m) in these mutants. In addition, our analysis of the Raman data shows that the bond order change of the nonbridging V--O bonds in the vanadate complexes does not correlate with the kinetic parameters in a number of PTPase variants as predicted by the transition state binding paradigm. Furthermore, the ionization state of the bound vanadate moiety is not invariant across the PTPase variants studied, and the average bond order of the nonbridging V--O bonds decreased by 0.06-0.07 valence unit in the wild type and all of the mutant PTPases, either in dianionic or in monoanionic form. Thus the complex would resemble an associative transition state, contrary to the previously determined dissociative structure of the transition state. Therefore, it is concluded that vanadate is not a true transition state analogue for the PTPase reactions. 相似文献
2.
Grigorenko BL Nemukhin AV Cachau RE Topol IA Burt SK 《Journal of molecular modeling》2005,11(6):503-508
The structures of the complexes between Ras•GDP bound to RasGAP in the presence of three probable γ-phosphate analogs (AlF3, AlF4− and MgF3−) for the transition state (TS) of the hydrolysis of guanosine triphosphate (GTP) by the Ras-RasGAP enzymes have been modeled
by quantum mechanical—molecular mechanical (QM/MM) calculations. These simulations contribute to the dispute on the nature
of the TS in the hydrolysis reaction, since medium resolution X-ray crystallography cannot discern among stereochemically
similar isoelectronic species (e.g., AlF3 or MgF3−). The optimized geometry for each structure has been found starting from experimental coordinates of one of them (PDBID:
1WQ1). Direct comparison of the experimental and computed geometry configurations in the immediate vicinity of the active
site suggests that MgF3− is the most likely candidate for the phosphate analog in the experimental structure. 相似文献
3.
Alexander A. Krayevsky Kyoichi A. Watanabe 《Nucleosides, nucleotides & nucleic acids》2013,32(7):1153-1162
Abstract Several years ago, we published an hypothesis concerning conformation of the glycone moiety of different substrates in active centers of several DNA metabolizing enzymes (Nucleosides & Nucleotides 1993, 12, 649–670). This hypothesis prompted us to further study the subtle conformational changes on substrates of DNA polymerases. Data collected in our, as well as other laboratories, have been analyzed, and models of active centers of different DNA polymerases are discussed below. Based on the model of substrate requirements, we now can divide DNA polymerases into two distinguished classes. 相似文献
4.
Masao Hiraiwa Mayu Saitoh Yutaka Uda Norihiro Azuma Brian M. Martin Yasuo Kishimoto John S. O'Brien 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1996,115(4):541-546
Mammalian lysosomal sialidase exists as an enzyme complex with β-galactosidase and carboxypeptidase, so-called “protective protein.” In this article, we report that chicken sialidase also occurs as a complex with β-galactosidase and protective protein. The purified sialidase complex had a molecular weight > 700 kDa on gel filtration and showed four protein components of 76, 65, 54 and 48 kDa on SDS-PAGE under nonreducing conditions. N-Terminal sequences of the 65- and 48-kDa proteins were homologous to human lysosomal β-galactosidase and protective protein precursor, respectively. The purified sialidase complex also had carboxypeptidase activity. Both sialidase and carboxypeptidase activities were precipitated together by an antibody against chicken β-galactosidase. The complex reversibly dissociated into 120-kDa β-galactosidase dimer and 100-kDa carboxypeptidase dimer at pH 7.5, but the sialidase irreversibly inactivated during the depolymerization. These findings indicate that chicken sialidase exists as a multienzyme complex, by which the sialidase activity appears to be stabilized. 相似文献
5.
Ke-Wu Yang Lei Feng Shao-Kang Yang Mahesh Aitha Alecander E. LaCuran Peter Oelschlaeger Michael W. Crowder 《Bioorganic & medicinal chemistry letters》2013,23(21):5855-5859
In an effort to test whether a transition state analog is an inhibitor of the metallo-β-lactamases, a phospholactam analog of carbapenem has been synthesized and characterized. The phospholactam 1 proved to be a weak, time-dependent inhibitor of IMP-1 (70%), CcrA (70%), L1 (70%), NDM-1 (53%), and Bla2 (94%) at an inhibitor concentration of 100 μM. The phospholactam 1 activated ImiS and BcII at the same concentration. Docking studies were used to explain binding and to offer suggestions for modifications to the phospholactam scaffold to improve binding affinities. 相似文献
6.
The crystal structure of yeast orotidine 5'-monophosphate decarboxylase (ODCase) complexed with the inhibitor 6-hydroxyuridine 5'-phosphate (BMP) reveals the presence of a series of strong interactions between enzyme residues and functional groups of this ligand. Enzyme contacts with the phosphoribofuranosyl moiety of orotidine 5'-phosphate (OMP) have been shown to contribute at least 16.6 kcal/mol of intrinsic binding free energy to the stabilization of the transition state for the reaction catalyzed by yeast ODCase. In addition to these enzyme-ligand contacts, active site residues contributed by both subunits of the dimeric enzyme are positioned to form hydrogen bonds with the 2'- and 3'-OH groups of the ligand's ribosyl moiety. These involve Thr-100 of one subunit and Asp-37 of the opposite subunit, respectively. To evaluate the contributions of these ribofuranosyl contacts to ground state and transition state stabilization, Thr-100 and Asp-37 were each mutated to alanine. Elimination of the enzyme's capacity to contact individual ribosyl OH groups reduced the k(cat)/K(m) value of the T100A enzyme by 60-fold and that of the D37A enzyme by 300-fold. Removal of the 2'-OH group from the substrate OMP decreased the binding affinity by less than a factor of 10, but decreased k(cat) by more that 2 orders of magnitude. Upon removal of the complementary hydroxymethyl group from the enzyme, little further reduction in k(cat)/K(m) for 2'-deoxyOMP was observed. To assess the contribution made by contacts involving both ribosyl hydroxyl groups at once, the ability of the D37A mutant enzyme to decarboxylate 2'-deoxyOMP was measured. The value of k(cat)/K(m) for this enzyme-substrate pair was 170 M(-1) s(-1), representing a decrease of more than 7.6 kcal/mol of binding free energy in the transition state. To the extent that electrostatic repulsion in the ground state can be tested by these simple alterations, the results do not lend obvious support to the view that electrostatic destabilization in the ground state enzyme-substrate complex plays a major role in catalysis. 相似文献
7.
Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I. 相似文献
8.
Apoflavodoxin from Anabaena PCC 7119 is a 169 residue globular protein of known structure and energetics. Here, we present a comprehensive Phi-value analysis to characterize the structure of its transition state. A total of 34 non-disruptive mutations are made throughout the structure and a range of Phi-values from zero to one are observed. In addition, a small set of eight aliphatic small-to-large mutations have been introduced in the hydrophobic core of the protein and they have been analyzed to investigate the feasibility of stabilizing the unfolding transition state by creating new non-native interactions. We find that the transition state of apoflavodoxin (so far the largest protein subjected to Phi-analysis) is diffuse and that it can be stabilized by unspecific hydrophobic interactions that can speed up the folding reaction. The data gathered on the apoflavodoxin transition state are compared with results from experimental studies in other proteins to revisit the relationship between the native state topology and transition state structure. 相似文献
9.
10.
Hiroaki Kamachi Keisuke Tanaka Ryo C. Yanagita Akira Murakami Kazuma Murakami Harukuni Tokuda Nobutaka Suzuki Yu Nakagawa Kazuhiro Irie 《Bioorganic & medicinal chemistry》2013,21(10):2695-2702
We have recently developed a simplified analog of aplysiatoxin (aplog-1) as an activator of protein kinase C (PKC) with anti-proliferative activity like bryostain 1. To identify sites in aplog-1 that could be readily modified to optimize therapeutic performance and to develop a molecular probe for examining the analog’s mode of action, substituent effects on the phenol ring were systematically examined. Whereas hydrophilic acetamido derivatives were less active than aplog-1 in inhibiting cancer cell growth and binding to PKCδ, introduction of hydrophobic bromine and iodine atoms enhanced both biological activities. The anti-proliferative activity was found to correlate closely with molecular hydrophobicity, and maximal activity was observed at a log P value of 4.0–4.5. On the other hand, an induction test with Epstein–Barr virus early antigen demonstrated that these derivatives have less tumor-promoting activity in vitro than aplog-1 regardless of the hydrophobicity of their substituents. These results would facilitate rapid preparation of molecular probes to examine the mechanism of the unique biological activities of aplog-1. 相似文献
11.
The properties of the transition state for serine protease-catalyzed hydrolysis of an amide bond were determined for a series of subtilisin variants from Bacillus lentus. There is no significant change in the structure of the enzyme upon introduction of charged mutations S156E/S166D, suggesting that changes in catalytic activity reflect global properties of the enzyme. The effect of charged mutations on the pK(a) of the active site histidine-64 N(epsilon)(2)-H was correlated with changes in the second-order rate constant k(cat)/K(m) for hydrolysis of tetrapeptide anilides at low ionic strength with a Br?nsted slope alpha = 1.1. The solvent isotope effect (D)2(O)(k(cat)/K(m))(1) = 1.4 +/- 0.2. These results are consistent with a rate-limiting breakdown of the tetrahedral intermediate in the acylation step with hydrogen bond stabilization of the departing amine leaving group. There is an increase in the ratio of hydrolysis of succinyl-Ala-Ala-Pro-Phe-anilides for p-nitroaniline versus aniline leaving groups with variants with more basic active site histidines that can be described by the interaction coefficient p(xy) = delta beta(lg)/delta pK(a) (H64) = 0.15. This is attributed to increased hydrogen bonding of the active site imidazolium N-H to the more basic amine leaving group as well as electrostatic destabilization of the transition state. A qualitative characterization of the transition state is presented in terms of a reaction coordinate diagram that is defined by the structure-reactivity parameters. 相似文献
12.
13.
Shou-Feng Wang Guan Rong Tian Wen-Zheng Zhang Jing-Yi Jin 《Bioorganic & medicinal chemistry letters》2009,19(17):5009-5011
Zinc-binding groups (ZBGs) are exhaustively applied in the development of the new inhibitors against a wide variety of physiologically and pathologically important zinc proteases. Here the α-nitro ketone was presented as a new ZBG, which is a transition-state analog featured by the unique bifurcated hydrogen bonds at the active site of carboxypeptidase A based on the structural analysis. Introduction of a nitro group at the α-position of the ketone could provide more non-covalent interactions without loss of the abilities to form a tetrahedral transition-state analog. 相似文献
14.
When does a functional correctly describe both the structure and the energy of the transition state?
Requiring that several properties are well reproduced is a severe test on density functional approximations. This can be assessed through the estimation of joint and conditional success probabilities. An example is provided for a small set of molecules, for properties characterizing the transition states (geometries and energies). 相似文献
15.
The exopeptidase carboxypeptidase A forms a tight complex with a 39 residue inhibitor protein from potatoes. We have determined the crystal structure of this complex, and refined the atomic model to a crystallographic R-factor of 0.196 at 2.5 Å resolution. The structure of the inhibitor protein is organized around a core of disulfide bridges. No α-helices or β-sheets are present in this protein, although there is one turn of 310 helix. The four carboxy-terminal residues of the inhibitor protein bind in the active site groove of carboxypeptidase A, defining binding subsites S′1, S1, S2 and S3 on the enzyme. The carboxy-terminal glycine of the inhibitor is cleaved from the remainder of the inhibitor in the complex, and remains trapped in the back of the active site pocket. Interactions between the inhibitor and residues Tyr248 and Arg71 of carboxypeptidase A resemble possible features of binding stages for substrates both prior and subsequent to peptide bond hydrolysis. Not all of these interactions would be available to different types of ester substrates, however, which may be in part responsible for the observed kinetic differences in hydrolysis between peptides and various classes of esters. With the exception of residues involved in the binding of the inhibitor protein (such as Tyr248), the structure of carboxypeptidase A as determined in the inhibitor complex is quite similar to the structure of the unliganded enzyme (Lipscomb et al., 1968), which was solved from an unrelated crystal form. 相似文献
16.
Is SH1-SH2-cross-linked myosin subfragment 1 a structural analog of the weakly-bound state of myosin? 下载免费PDF全文
Myosin subfragment 1 (S1) with SH1 (Cys(707)) and SH2 (Cys(697)) groups cross-linked by p-phenylenedimaleimide (pPDM-S1) is thought to be an analog of the weakly bound states of myosin bound to actin. The structural properties of pPDM-S1 were compared in this study to those of S1.ADP.BeF(x) and S1.ADP.AlF(4)(-), i.e., the established structural analogs of the myosin weakly bound states. To distinguish between the conformational effects of SH1-SH2 cross-linking and those due to their monofunctional modification, we used S1 with the SH1 and SH2 groups labeled with N-phenylmaleimide (NPM-S1) as a control in our experiments. The state of the nucleotide pocket was probed using a hydrophobic fluorescent dye, 3-[4-(3-phenyl-2-pyrazolin-1-yl)benzene-1-sulfonylamido]phen ylboronic acid (PPBA). Differential scanning calorimetry (DSC) was used to study the thermal stability of S1. By both methods the conformational state of pPDM-S1 was different from that of unmodified S1 in the S1.ADP.BeF(x) and S1.ADP.AlF(4)(-) complexes and closer to that of nucleotide-free S1. Moreover, BeF(x) and AlF(4)(-) binding failed to induce conformational changes in pPDM-S1 similar to those observed in unmodified S1. Surprisingly, when pPDM cross-linking was performed on S1.ADP.BeF(x) complex, ADP.BeF(x) protected to some extent the nucleotide pocket of S1 from the effects of pPDM modification. NPM-S1 behaved similarly to pPDM-S1 in our experiments. Overall, this work presents new evidence that the conformational state of pPDM-S1 is different from that of the weakly bound state analogs, S1.ADP.BeF(x) and S1.ADP.AlF(4)(-). The similar structural effects of pPDM cross-linking of SH1 and SH2 groups and their monofunctional labeling with NPM are ascribed to the inhibitory effects of these modifications on the flexibility/mobility of the SH1-SH2 helix. 相似文献
17.
Frederick J. Warren Peter J. ButterworthPeter R. Ellis 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Starch is a main source of carbohydrate in human diets, but differences are observed in postprandial glycaemia following ingestion of different foods containing identical starch contents. Such differences reflect variations in rates at which different starches are digested in the intestine. In seeking explanations for these differences, we have studied the interaction of α-amylase with starch granules. Understanding this key step in digestion should help with a molecular understanding for observed differences in starch digestion rates.Methods
For enzymes acting upon solid substrates, a Freundlich equation relates reaction rate to enzyme adsorption at the surface. The Freundlich exponent (n) equals 2/3 for a liquid-smooth surface interface, 1/3 for adsorption to exposed edges of ordered structures and 1.0 for solution–solution interfaces. The topography of a number of different starch granules, revealed by Freundlich exponents, was compared with structural data obtained by differential scanning calorimetry and Fourier transform infrared spectroscopy with attenuated total internal reflectance (FTIR-ATR).Results
Enzyme binding rate and FTIR-ATR peak ratio were directly proportional to n and ΔgelH was inversely related to n. Amylase binds fastest to solubilised starch and to granules possessing smooth surfaces at the solid–liquid interface and slowest to granules possessing ordered crystalline surfaces.Conclusions
Freundlich exponents provide information about surface blocklet structures of starch that supplements knowledge obtained from physical methods.General Significance
Nanoscale structures at the surface of starch granules influence hydrolysis by α-amylase. This can be important in understanding how dietary starch is digested with relevance to diabetes, cardiovascular health and cancer. 相似文献18.
Kieran O'Neill Alexander Garcia Anita Schwegmann Rafael C Jimenez Dan Jacobson Henning Hermjakob 《BMC bioinformatics》2008,9(1):437
Background
Ontologies such as the Gene Ontology can enable the construction of complex queries over biological information in a conceptual way, however existing systems to do this are too technical. Within the biological domain there is an increasing need for software that facilitates the flexible retrieval of information. OntoDas aims to fulfil this need by allowing the definition of queries by selecting valid ontology terms. 相似文献19.
Jessica Petri Yosuke Shimaki Wanting Jiao Hannah R. Bridges Euan R. Russell Emily J. Parker David Aragão Gregory M. Cook Yoshio Nakatani 《BBA》2018,1859(7):482-490
Type II NADH:quinone oxidoreductase (NDH-2) is a proposed drug-target of major pathogenic microorganisms such as Mycobacterium tuberculosis and Plasmodium falciparum. Many NDH-2 inhibitors have been identified, but rational drug development is impeded by the lack of information regarding their mode of action and associated inhibitor-bound NDH-2 structure. We have determined the crystal structure of NDH-2 complexed with a quinolone inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). HQNO is nested into the slot-shaped tunnel of the Q-site, in which the quinone-head group is clamped by Q317 and I379 residues, and hydrogen-bonds to FAD. The interaction of HQNO with bacterial NDH-2 is very similar to the native substrate ubiquinone (UQ1) interactions in the yeast Ndi1–UQ1 complex structure, suggesting a conserved mechanism for quinone binding. Further, the structural analysis provided insight how modifications of quinolone scaffolds improve potency (e.g. quinolinyl pyrimidine derivatives) and suggests unexplored target space for the rational design of new NDH-2 inhibitors. 相似文献
20.
MrpA and MrpD are homologous to NuoL, NuoM and NuoN in complex I over the first 14 transmembrane helices. In this work, the C-terminal domain of MrpA, outside this conserved area, was investigated. The transmembrane orientation was found to correspond to that of NuoJ in complex I. We have previously demonstrated that the subunit NuoK is homologous to MrpC. The function of the MrpA C-terminus was tested by expression in a previously used Bacillus subtilis model system. At neutral pH, the truncated MrpA still worked, but at pH 8.4, where Mrp-complex formation is needed for function, the C-terminal domain of MrpA was absolutely required. 相似文献