首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. C. Jewer  L. D. Incoll  J. Shaw 《Planta》1982,155(2):146-153
Epidermis is easily detached from both adaxial and abaxial surfaces of leaf four of the Argenteum mutant of Pisum sativum L. The isolated epidermis has stomata with large, easily-measured pores. Hairs and glands are absent. The density of stomata is high and contamination by mesophyll cells is low. In the light and in CO2-free air, stomata in isolated adaxial epidermis of Argenteum mutant opened maximally after 4 h incubation at 25°C. The response of stomata to light was dependent on the concentration of KCl in the incubation medium and was maximal at 50 mol m-3 KCl. Stomata did not respond to exogenous kinetin, but apertures were reduced by incubation of epidermis on solutions containing between 10-5 and 10-1 mol m-3 abscisic acid (ABA). The responses of stomata of Argenteum mutant to light, exogenous KCl, ABA and kinetin were comparable with those described previously for stomata in isolated epidermis of Commelina communis. A method for preparing viable protoplasts of guard cells from isolated epidermis of Argenteum mutant is described. The response of guard cell protoplasts to light, exogenous KCl, ABA and kinetin were similar to those of stomata in isolated epidermis except that the increase in volume of the protoplasts in response to light was maximal at a lower concentration of KCl (10 mol m-3) and that protoplasts responded more rapidly to light than stomata in isolated epidermis. The protoplasts did not respond to exogenous kinetin, but when incubated for 1 h in the light and in CO2-free air on a solution containing 10-3 mol m-3 ABA, they decreased in volume by 30%. The advantages of using epidermis from Argenteum mutant for experiments on stomatal movements are discussed.Abbreviations ABA abscisic acid - MES 2-(N-morpholino)ethanesulfonic acid  相似文献   

2.
Closure of stomata by abscisic acid (ABA) was studied by floating leaf epidermal strips of Commelina communis L. in PIPES buffer (pH 6.8) containing a range of KCl concentrations. Control apertures were greatest at high concentrations of the salt, and the effects of ABA, in terms of closure, were most pronounced below 100 mol m-3 KCl. Stomata opened on strips floated on buffer plus 50 mol m-3 KCl and closed within 10 min when transferred to the same medium plus 0.1 mol m-3 ABA. [2-14C]ABA was used to study uptake and distribution of the hormone by the epidermal strips. It was calculated that no more than 6 fmol ABA were present per stomatal complex at the time of closure, although uptake continued thereafter. Microautoradiography indicated that radioactivity from [2-14C]ABA accumulated in the stomatal complex at or near the guard cells within 20 min. TLC was used to examine the state of the label after 1 h incubation. Efflux of label from preincubated tissue appeared to occur in three phases (t1/2=7.2 s, 4.0 min, 35.2 min). Efflux was correlated with stomatal re-opening. The results confirm that ABA can accumulate in the epidermis of C. communis.Abbreviation ABA Abscisic acid  相似文献   

3.
Epidermal strips from well-watered faba-bean plants were subjected to a range of abscisic acid (ABA) and indolyl-3-acetic acid (IAA) concentrations (10-5 to 1 mM) in the presence or absence of CO2 in light or dark. ABA had inhibitory effect on abaxial stomatal apertures in all the concentrations studied and retained them closed even after addition of KCl (SO and 100 mM) to the incubation medium. It also influenced stomatal responses to CO2. In the presence of CO2 apertures were greater than in its absence in light as well as in darkness. This relationship remained unchanged also after addition of KCl. The action of ABA inhibited accumulation of potassium in the guard cells. IAA stimulated stomatal opening and its effect was quite opposite to ABA; in the presence of CO2 the apertures were smaller than in its absence. IAA, however, was able to inhibit the closing effect of darkness, CO2, and ABA, and stimulated potassium accumulation in the guard cells. Simultaneous action of ABA+IAA manifested effects of both substances.  相似文献   

4.
Abstract In normal air, illumination with a low level of blue or red light (40 μmol m?2 s?1) did not induce stomatal opening in maize plantlets. In CO2-free air, 40 μmol m?2 s?1 of blue or red light promoted an enhancement in stomatal opening. At the same quantum flux, blue light was more efficient than red light and stomatal closure occurred more rapidly with a significantly shorter lag phase after blue light. Anoxia inhibited light-dependent stomatal opening, even under 320 μmol m?2 s?1 illumination. However, after 60 min of illumination with 40 μmol m?2 s?1 of blue light in anoxia, transient stomatal opening was observed when the plant was returned to darkness and normal air. This transient stomatal opening was weaker after pretreatment with red light. We conclude that a blue-light-dependent process induced under anoxia leads to stomatal opening provided oxygen is present. Possible mechanisms associated with blue-light-effect and the nature of the oxygen-consuming processes are discussed.  相似文献   

5.
Photosynthesis and transpiration rates of transgenic (expressing yeast-derived invertase targeted to the vacuole) tobacco (Nicotiana tabacum L.) leaves were, respectively, 50 and 70% of those of a wild type at 20°C, 350 cm3 m?3 CO2 concentration, 450 μmol (photons) m?2 s?1 of light intensity, and 70% relative air humidity. These differences could be attributed: (a) to changes in leaf anatomy and, consequently, to changes in gases diffusion between the cells' surfaces and the atmosphere; (b) to different stomatal apertures, and, for the photosynthesis rate, (c) to the altered CO2 assimilation rate. Our objective was to estimate the relative contributions of these three sources of difference. Measurements on the wild-type and the transgenic leaf cross-sections gave values for the cell area index (CAI, cell area surface per unit of leaf area surface) of 15.91 and 13.97, respectively. The two-dimensional model 2DLEAF for leaf gas exchange was used to estimate quantitatively anatomical, stomatal and biochemical components of these differences. Transpiration rate was equal to 0.9 for the wild-type and to 0.63 mmol m?2 s?1 for the transgenic leaf: 24.0% of the difference (0.066 mmol m?2 s?1 was caused by the greater cell area surface in the wild-type leaf, and 66.0% was caused by a smaller stomatal aperture in the transgenic leaf. Photosynthetic rate was 3.10 and 1.55 μmol m?2 s?1 for the wild-type and transgenic leaves, respectively. Only 10.3% of this difference (0.16 μmol m?2 s?1) was caused by the difference in CAI, and the remaining 89.7% was caused by altered CO2 assimilation rate.  相似文献   

6.
Leaf‐level measurements have shown that mesophyll conductance (gm) can vary rapidly in response to CO2 and other environmental factors, but similar studies at the canopy‐scale are missing. Here, we report the effect of short‐term variation of CO2 concentration on canopy‐scale gm and other CO2 exchange parameters of sunflower (Helianthus annuus L.) stands in the presence and absence of abscisic acid (ABA) in their nutrient solution. gm was estimated from gas exchange and on‐line carbon isotope discrimination (Δobs) in a 13CO2/12CO2 gas exchange mesocosm. The isotopic contribution of (photo)respiration to stand‐scale Δobs was determined with the experimental approach of Tcherkez et al. Without ABA, short‐term exposures to different CO2 concentrations (Ca 100 to 900 µmol mol?1) had little effect on canopy‐scale gm. But, addition of ABA strongly altered the CO2‐response: gm was high (approx. 0.5 mol CO2 m?2 s?1) at Ca < 200 µmol mol?1 and decreased to <0.1 mol CO2 m?2 s?1 at Ca >400 µmol mol?1. In the absence of ABA, the contribution of (photo)respiration to stand‐scale Δobs was high at low Ca (7.2‰) and decreased to <2‰ at Ca > 400 µmol mol?1. Treatment with ABA halved this effect at all Ca.  相似文献   

7.
Acclimation of plant photosynthesis to light irradiance (photoacclimation) involves adjustments in levels of pigments and proteins and larger scale changes in leaf morphology. To investigate the impact of rising atmospheric CO2 on crop physiology, we hypothesize that elevated CO2 interacts with photoacclimation in rice (Oryza sativa). Rice was grown under high light (HL: 700 µmol m?2 s?1), low light (LL: 200 µmol m?2 s?1), ambient CO2 (400 µl l?1) and elevated CO2 (1000 µl l?1). Leaf six was measured throughout. Obscuring meristem tissue during development did not alter leaf thickness indicating that mature leaves are responsible for sensing light during photoacclimation. Elevated CO2 raised growth chamber photosynthesis and increased tiller formation at both light levels, while it increased leaf length under LL but not under HL. Elevated CO2 always resulted in increased leaf growth rate and tiller production. Changes in leaf thickness, leaf area, Rubisco content, stem and leaf starch, sucrose and fructose content were all dominated by irradiance and unaffected by CO2. However, stomata responded differently; they were significantly smaller in LL grown plants compared to HL but this effect was significantly suppressed under elevated CO2. Stomatal density was lower under LL, but this required elevated CO2 and the magnitude was adaxial or abaxial surface‐dependent. We conclude that photoacclimation in rice involves a systemic signal. Furthermore, extra carbohydrate produced under elevated CO2 is utilized in enhancing leaf and tiller growth and does not enhance or inhibit any feature of photoacclimation with the exception of stomatal morphology.  相似文献   

8.
The influence of short-term salinity (day 1–day 2: 50 mol m–3 NaCl, day 3–day 7: 100 mol m–3 NaCl in the nutrient solution) on leaf gas exchange characteristics were studied in two fig clones (Ficus carica L.), whose root mass had been varied in relation to the leaf area. The stomatal conductance was diminished by NaCl in the first week of treatment. NaCl slightly reduced the calculated intercellular partial pressure of CO2. The net photosynthetic rate of plants with many roots was stimulated by NaCl on some days of the first week of treatment, whereas the net assimilation rate of the plants with few roots remained unaltered or decreased by NaCl. Only the assimilation of the salt-treated plants of one clone for some days during the first week of treatment seemed to be influenced by stomatal conductance. Nonstomatal factors were primarily responsible for the changes in CO2 uptake in response to salt and/or root treatment. The water use efficiency increased during several days of the first week of NaCl treatment. Decreased stomatal conductance, increased water use efficiency and stimualtion of the net CO2 assimilation rate appear to enhance salt tolerance during the first few days of salinity. ei]H Lambers  相似文献   

9.
Cytosolic Ca2+· ([Ca2+]i, and elongation growth were measured in the roots of Arabidopsis thaliana. Exposure of plant tissues to high NaCl and abscisic acid (ABA) concentrations results in a reduction in the rate of growth, but the mechanism by which growth is inhibited is not understood. Both NaCl and ABA treatments are known to influence [Ca2+]i, and in this study we measured the effects of salinity and ABA on [Ca2+]i in cells from the meristematic region of Arabidopsis roots. The Ca2+-sensitive dye Fura-2 and ratiometric techniques were used to measure [Ca2+]i in cells of the root meristem region. Resting [Ca2+]i was found to be between 100 and 200 μmol m?3 in roots of untreated plants. Resting [Ca2+]i changed in response to changes in the [Ca2+] surrounding growing roots. An increase of external [Ca2+] increased [Ca2+]i; conversely, a decrease of external [Ca2+] decreased [Ca2+]i. Exposure of roots to NaCl caused a rapid reduction of [Ca2+]i, a response that was proportional to the external NaCl concentration. Thus, as the NaCl concentration was increased, [Ca2+]i in root meristematic cells decreased. Root elongation was also inhibited in proportion to the external NaCl concentration, with maximal inhibition occurring at 120 mol m?3 NaCl. The [Ca2+]i of root meristem cells also changed in response to ABA, and the magnitude of the effect of ABA was dependent upon ABA concentration. Treatment with 0.2 mmol m?3 ABA caused a momentary increase in [Ca2+]i followed by a decrease after 15 min, but 10 mmol m?3 ABA caused an immediate decline in [Ca2+]i. There was a strong positive correlation between [Ca2+]i and root elongation rates. Experiments with the ABA-deficient Arabidopsis mutant aba-3 indicated that the reduction in [Ca2+]i brought about by NaCl was unlikely to be mediated via changes in endogenous ABA. Experiments with solutes such as sorbitol, KCl and NaNO3 indicated that the effects of NaCl could be mimicked by other solutes and was not specific for NaCl.  相似文献   

10.
Maize plants (Zea mays L. hybrid INRA 508) were placed under controlled conditions of light and CO2 partial pressure. The K+, Cl? and P contents were then determined by X-ray microanalysis in the bulbous end of guard cells and in the center of subsidiary cells. The results were interpreted in connection with the stomatal conductance at the time of sampling. In normal air, the K+ and Cl? contents in guard cells only rose from a light threshold of about 300 μmol m?2 s?1 at which stomata were already largely open. At 600 μmol m?2 s?1, the K+ and Cl? levels in guard cells attained values that were 3- and 8-fold greater, respectively, than the values observed in darkness. The K+ and Cl? contents in the subsidiary cells remained quite constant irrespective of the light conditions. CO2-free air in darkness induced a significant K+ influx towards guard and subsidiary cells. Under light and in CO2-free air, the K+ and Cl? contents dramatically increased in the guard cells, but slightly decreased in the subsidiary cells. Thus, when subjected to strong light in CO2-free air, the K+ and Cl? contents in the subsidiary cells were approximately equal to those measured in normal air conditions. In the guard cells, stomatal opening was associated with a marked shift of the Cl?/K+ ratio – from 0.3 for closed stomata to ca 1 for fully open stomata. This could imply a slow change in the nature of the principal counterion accompanying K+ during stomatal opening. The content of P in guard cells appeared, in contrast to that of K+ and Cl?, to be practically independent of stomatal aperture.  相似文献   

11.
Abstract Measurements of photosynthesis as a function of intercellular CO2 (A-C1 curve) were made on single. attached leaves of Plantago maritima L. while plants were exposed to changes in salinity. Salinity was increased in steps from 50 to 500 mol m-3 NaCl and then returned to 50 mol m-3 NaCl at two rates, 75 mol m-3 (NaCl) day-1 (experiment 1) and 150 mol m-3 (NaCl) day-1 (experiment 2). In experiment one, the CO2 assimilation rate declined at high CO2 concentrations, but the initial slope of the A-C1 curve was unaffected in young leaves after salinity was increased to 500 mol m-3 NaCl. The insensitivity of photosynthesis to increases in CO2 concentration above air levels was not associated with insensitivity to a reduction in oxygen concentration. In experiment two increasing the rate at which salinity was changed resulted in larger declines in photosynthesis and leaf conductance than were observed in experiment one. Both the initial slope and the CO2 saturated region of the A-C1 curve were substantially reduced at high salinity suggesting that mesophyll biochemical capacity had been inhibited. However, concurrent measurements of photosynthesis as oxygen evolution under 5% CO2 indicated no effect of increased salinity on photosynthetic capacity. This suggests that the apparent non-stomatal limitations indicated by A-C1 measurements were artifacts caused by strong, nonuniform stomatal closure.  相似文献   

12.
Abstract Environmental stresses can decrease photosynthesis by a direct effect on photosynthetic capacity of the mesophyll or by a CO2 limitation resulting from stomatal closure. In the present study, a ‘path-dependent method’ (Jones, 1985) for the partitioning of a stress-related decline in assimilation rate between non-stomatal and stomatal factors was evaluated, using light quality as a ‘stress’. Kinetic data on assimilation rate and conductance of Phragmipedium longifolium following a change in light quality from 95 μmol m?2s?1 white light to 95 μmol m?2s?1 red light failed to generate a smooth response curve for conductance. Partitioning of limitations on assimilation by a path-dependent method that utilizes the actual trajectories of conductance and assimilation was therefore not feasible. A simplified path-dependent method (Jones, 1985) which assumes that either mesophyll cells or guard cells respond first to a stress was applied to steady-state measurements of assimilation and conductance under red and white illumination. Either 5% or 23% of the observed reduction in assimilation rate under white light was attributable to stomatal factors, depending on whether the ‘stomatal first’ or the ‘mesophyll first’ path was assumed. In the absence of additional information indicating the appropriate choice of path, arbitrary choice may therefore lead to widely divergent estimates, and potentially erroneous conclusions. An alternative approach to the evaluation of the importance to carbon assimilation of stomatal and non-stomatal factors is suggested.  相似文献   

13.
C3 photosynthesis is often limited by CO2 diffusivity or stomatal (gs) and mesophyll (gm) conductances. To characterize effects of stomatal closure induced by either high CO2 or abscisic acid (ABA) application on gm, we examined gs and gm in the wild type (Col‐0) and ost1 and slac1‐2 mutants of Arabidopsis thaliana grown at 390 or 780 μmol mol?1 CO2. Stomata of these mutants were reported to be insensitive to both high CO2 and ABA. When the ambient CO2 increased instantaneously, gm decreased in all these plants, whereas gs in ost1 and slac1‐2 was unchanged. Therefore, the decrease in gm in response to high CO2 occurred irrespective of the responses of gs. gm was mainly determined by the instantaneous CO2 concentration during the measurement and not markedly by the CO2 concentration during the growth. Exogenous application of ABA to Col‐0 caused the decrease in the intercellular CO2 concentration (Ci). With the decrease in Ci, gm did not increase but decreased, indicating that the response of gm to CO2 and that to ABA are differently regulated and that ABA content in the leaves plays an important role in the regulation of gm.  相似文献   

14.
We studied the effects of temperature, carbon dioxide and abscisic acid on mung bean (Vigna radiata). Plants were grown under 26/22°C or 32/28°C (16?h?light/8?h?dark) at 400 or 700?μmol?mol?1 CO2 and received ABA application of 0 or 100?μl (10?μg) every other day for three weeks, after eight days of initial growth, in growth chambers. We measured 24 parameters. As individual factors, in 16 cases temperature; in 8 cases CO2; in 9 cases ABA; and as interactive factors, in 4 cases, each of temperature?×?CO2, and CO2?×?ABA; and in 2 cases, temperature?×?ABA were significant. Higher temperatures increased growth, aboveground biomass, growth indices, photochemical quenching (qP) and nitrogen balance index (NBI). Elevated CO2 increased growth and aboveground biomass. ABA decreased growth, belowground biomass, qP and flavonoids; increased shoot/root mass ratio, chlorophyll and NBI; and had little role in regulating temperature–CO2 effects.

Abbreviations: AN: net CO2 assimilation; E: transpiration; Fv/Fm: maximum quantum yield of PSII; gs: stomatal conductance; LAR: leaf area ratio; LMA: leaf mass per area; LMR: leaf mass ratio;φPSII: effective quantum yield of PSII; qNP: non-photochemical quenching; qP: photochemical quenching; SRMR: shoot to root mass ratio; WUE: water use efficiency  相似文献   


15.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

16.
Stomatal responses to light of Arabidopsis thaliana wild-type plants and mutant plants deficient in starch (phosphoglucomutase deficient) were compared in gas exchange experiments. Stomatal density, size and ultrastructure were identical for the two phenotypes, but no starch was observed in guard cells of the mutant plants whatever the time of day. The overall extent of changes in stomatal conductance during 14 h light–10 h dark cycles was similar for the two phenotypes. However, the slow endogenous stomatal opening occurring in darkness in the wild type was not observed in the mutant plants. Stomata in the mutant plants responded much more slowly to blue light (70 μmol m?2 s?1) though the response to red light (250 μmol m?2 s?1) was similar to that of wild-type plants. In paradermal sections, stomatal responses to red light (300 μmol m?2 s?1) were weak for wild-type plants as well as for mutant plants. Stomatal opening was greater under low blue light (75 μmol m?2 s?1) than under red light for the two genotypes. However, in mutant plants, a high chloride concentration (50 mol m?3) was necessary to achieve the same stomatal aperture as observed for the wild-type plants. These results suggest that starch metabolism, via the synthesis of a counter-ion to potassium (probably malate), is required for full stomatal response to blue light but is not involved in the stomatal response to red light.  相似文献   

17.
Fischer RA  Hsiao TC 《Plant physiology》1968,43(12):1953-1958
The stimulation by KCl of stomatal opening in isolated epidermal strips of Vicia faba was examined. In dark + normal air the opening response was maximal at 100 mm KCl while in light + CO2-free air it was maximal at about 10 mm KCl. CO2-free air was more influential than light in reducing the KCl concentration required for maximal opening. K+ was essential while Cl seemed to be of secondary importance in these processes.  相似文献   

18.
Isolated characean internodal cells of Nitellopsis obtusa can be stored in artificial pond water for many days, but they cannot survive in 100mol m?3 NaCl solution unless more than several mol m?3 Ca2+ is added. Short-term effects of NaCl stress on the cytosolic concentration of Ca2+ ([Ca2+]c), cytosolic pH (pHc) and vacuolar pH (pHv) were studied in relation to the external concentration of Ca2+ ([Ca2+]e). Changes in [Ca2+]c were measured with light emission from a Ca2+-sensitive photoprotein, semisynthetic fch-aequorin which had been injected into the cytosol. Both pHc and pHv were measured with double-barrelled pH-sensitive microelectrodes. When internodal cells were treated with 100 mol m?3 NaCl (0–1 mol m?3 NaCl (0.1 mol m?3 [Ca2+]e), [Ca2+]c increased and then recovered to the original level within 60 min. The time course of the transient change in [Ca2+]c was not influenced by the level of [Ca2+]c (0.1 and 10 mol m?3). In some cases, the transient increase in [Ca2+]c was induced only by increasing external osmotic pressure with sorbitol. In response to treatment with 100 mol m?3 NaCl (0.1 mol m?3 [Ca2+]c), pHc decreased by 0.1–0.2 units after 10min but recovered after 30–60 min, while pHv increased by 0.4–0.5 units after 2–50 min and tended to recover after 60 min. The initial changes in both pHc and pHv were suppressed when [Ca2+]e was raised from 0.1 to 10mol m?3. These results show that the charophyte alga Nitellopsis can regulate [Ca2+]c, pHc and pHv under NaCl stress in the short term and that the protective effect of Ca2+ on salinity stress is apparently unrelated to perturbation of Ca2+ and pH homeostasis.  相似文献   

19.
Native tallgrass prairie in NE Kansas was exposed to elevated (twice ambient) or ambient atmospheric CO2 levels in open-top chambers. Within chambers or in adjacent unchambered plots, the dominant C4 grass, Andropogon gerardii, was subjected to fluctuations in sunlight similar to that produced by clouds or within canopy shading (full sun > 1500 μmol m−2 s−1 versus 350 μmol m−2 s−1 shade) and responses in gas exchange were measured. These field experiments demonstrated that stomatal conductance in A. gerardii achieved new steady state levels more rapidly after abrupt changes in sunlight at elevated CO2 when compared to plants at ambient CO2. This was due primarily to the 50% reduction in stomatal conductance at elevated CO2, but was also a result of more rapid stomatal responses. Time constants describing stomatal responses were significantly reduced (29–33%) at elevated CO2. As a result, water loss was decreased by as much as 57% (6.5% due to more rapid stomatal responses). Concurrent increases in leaf xylem pressure potential during periods of sunlight variability provided additional evidence that more rapid stomatal responses at elevated CO2 enhanced plant water status. CO2-induced alterations in the kinetics of stomatal responses to variable sunlight will likely enhance direct effects of elevated CO2 on plant water relations in all ecosystems.  相似文献   

20.
Thermotolerance of photosynthesis in salt‐adapted Atriplex centralasiatica plants (100–400 mm NaCl) was evaluated in this study after detached leaves and whole plants were exposed to high temperature stress (30–48 °C) either in the dark or under high light (1200 mol m?2 s?1). In parallel with the decrease in stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate decreased significantly with increasing salt concentration. There was no change in the maximal efficiency of PSII photochemistry (Fv/Fm) with increasing salt concentration, suggesting that there was no damage to PSII in salt‐adapted plants. On the other hand, there was a striking difference in the response of PSII and CO2 assimilation capacity to heat stress in non‐salt‐adapted and salt‐adapted leaves. Leaves from salt‐adapted plants maintained significantly higher Fv/Fm values than those from non‐salt‐adapted leaves at temperatures higher than 42 °C. The Fv/Fm differences between non‐salt‐adapted and salt‐adapted plants persisted for at least 24 h following heat stress. Leaves from salt‐adapted plants also maintained a higher net CO2 assimilation rate than those in non‐salt‐adapted plants at temperatures higher than 42 °C. This increased thermotolerance was independent of the degree of salinity since no significant changes in Fv/Fm and net CO2 assimilation rate were observed among the plants treated with different concentrations of NaCl. The increased thermotolerance of PSII induced by salinity was still evident when heat treatments were carried out under high light. Given that photosynthesis is considered to be the physiological process most sensitive to high temperature damage, increased thermotolerance of photosynthesis may be of significance since A. centralasiatica, a typical halophyte, grows in the high salinity regions in the north of China, where the temperature in the summer is often as high as 45 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号