首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor (TGF)-beta1 has been reported to cause endothelial cell apoptosis. However, conflicting data have also demonstrated that TGF-beta1 promotes endothelial cell survival. In this study, the effect of TGF-beta1 on apoptosis of cultured bovine pulmonary artery endothelial cells (PAEC) induced by multiple stimuli was investigated. TGF-beta1 protected against apoptosis of bovine PAEC induced by serum deprivation or the VEGF receptor inhibitor SU-5416, but not by UV light exposure or TNFalpha. Neither caspase-8 nor caspase-12 was activated by serum deprivation or the VEGF receptor blocker. However, blockade of VEGF receptors activated caspase-9, an effect that was abolished by TGF-beta1. Furthermore, serum deprivation and inhibition of VEGF receptors significantly decreased the protein level of Bcl-2, an effect that was also abrogated by TGF-beta1. In addition, the baseline level of Bcl-2 was enhanced by TGF-beta1 and reduced by inhibition of activin receptor-like kinase 5 (ALK5), a TGF-beta1 type I receptor. Furthermore, inhibition of ALK5 caused apoptosis of bovine PAEC. These results suggest that TGF-beta1 signaling is critical for maintenance of bovine PAEC survival. Finally, the protective effects of TGF-beta1 on bovine PAEC apoptosis and Bcl-2 reduction were abolished by ALK5 inhibition, but not by inhibition of non-SMAD signaling pathways. Also, TGF-beta1 activated SMAD2 and SMAD1/5, an effect that was abolished by ALK5 inhibition. The results of this study suggest that TGF-beta1 protects against bovine PAEC apoptosis, possibly through ALK5-mediated Bcl-2 induction and subsequent inhibition of the mitochondria-mediated intrinsic pathway of apoptosis. Understanding the mechanism by which TGF-beta1 promotes endothelial cell survival may provide a better treatment for apoptosis-dependent vascular diseases, such as emphysema.  相似文献   

2.
Osteopontin protects endothelial cells from apoptosis induced by growth factor withdrawal. This interaction is mediated by the alpha(v)beta(3) integrin and is NF-kappaB-dependent (Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F., and Giachelli, C. M. (1998) J. Cell Biol. 141, 1083-1093). In the present study we used differential cloning to identify osteopontin-induced, NF-kappaB-dependent genes in endothelial cells. One of the genes identified in this screen was osteoprotegerin, a member of the tumor necrosis factor receptor superfamily. By Northern and Western blot analysis, osteoprotegerin mRNA and protein levels were very low in endothelial cells plated on the non-integrin cell attachment factor, poly-d-lysine. In contrast, osteoprotegerin mRNA and protein levels were induced 5-7-fold following alpha(v)beta(3) ligation by osteopontin. Osteoprotegerin induction by osteopontin was time-dependent and observed as early as 3 h following treatment. NF-kappaB inactivation achieved by over expression of an IkappaB super repressor in endothelial cells completely inhibited osteoprotegerin induction by osteopontin. Finally, purified osteoprotegerin protected endothelial cells with inactive NF-kappaB from apoptosis induced by growth factor deprivation. These data suggest that alpha(v)beta(3)-mediated endothelial survival depends on osteoprotegerin induction by NF-kappaB and indicate a new function for osteoprotegerin in endothelial cells.  相似文献   

3.
The vasculature of the embryo requires vascular endothelial growth factor (VEGF) during development, but most adult blood vessels lose VEGF dependence. However, some capillaries in the respiratory tract and selected other organs of adult mice regress after VEGF inhibition. The present study sought to identify the sequence of events and the fate of endothelial cells, pericytes, and vascular basement membrane during capillary regression in mouse tracheas after VEGF signaling was blocked with a VEGF-receptor tyrosine kinase inhibitor AG-013736 or soluble receptor construct (VEGF Trap or soluble adenoviral VEGFR-1). Within 1 day, patency was lost and fibrin accumulated in some tracheal capillaries. Apoptotic endothelial cells marked by activated caspase-3 were present in capillaries without blood flow. VEGF inhibition was accompanied by a 19% decrease in tracheal capillaries over 7 days and 30% over 21 days. During this period, desmin/NG2-immunoreactive pericytes moved away from regressing capillaries onto surviving vessels. Empty sleeves of basement membrane, left behind by regressing endothelial cells, persisted for about 2 wk and served as a scaffold for vascular regrowth after treatment ended. The amount of regrowth was limited by the number of surviving basement membrane sleeves. These findings demonstrate that, after inhibition of VEGF signaling, some normal capillaries regress in a systematic sequence of events initiated by a cessation of blood flow and followed by apoptosis of endothelial cells, migration of pericytes away from regressing vessels, and formation of empty basement membrane sleeves that can facilitate capillary regrowth.  相似文献   

4.
Regulation of endothelial cell apoptosis is a critical modulator of normal and pathological angiogenesis. In this study, we examined the role of the protein kinase Akt/PKB in endothelial cell survival in response to growth factor and matrix attachment signals. Vascular endothelial growth factor(VEGF)-induced cytoprotection of endothelial cell monolayers correlated with the wortmannin-sensitive induction of Akt activity. Transfection of an adenovirus expressing a dominant-negative Akt mutant decreased endothelial cell viability in the presence of VEGF. Conversely, adenoviral transduction of wild-type Akt facilitated the cell survival effects of VEGF, whereas transduction of constitutively active Akt conferred endothelial cell survival in the absence of VEGF. Constitutively active Akt also conferred survival to endothelial cells in suspension culture, whereas stimulation with VEGF did not. In suspension cultures, VEGF stimulation was unable to activate Akt, and Akt protein levels were repressed in cells undergoing anoikis. These data suggest that cross-talk between growth factor- and anchorage-dependent signaling pathways are essential for Akt activation and endothelial cell survival.  相似文献   

5.
We hypothesize that compensatory lung growth after unilateral pneumonectomy in a murine model is, in part, angiogenesis dependent and can be altered using angiogenic agents, possibly through regulation of endothelial cell proliferation and apoptosis. Left pneumonectomy was performed in mice. Mice were then treated with proangiogenic factors [vascular endothelial growth factor (VEGF); basic fibroblast growth factor (bFGF)], VEGF receptor antibodies (MF-1, DC101), and VEGF receptor small molecule chemical inhibitors. Lung volume and mass were measured. The lungs were analyzed using immunohistochemistry by CD31 staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, type II pneumocytes staining, and proliferating cell nuclear antigen. Compensatory lung growth was complete by postoperative day 10 and was associated with diffuse apoptosis of endothelial cells and pneumocytes. This process was accelerated by VEGF, such that growth was complete by postoperative day 4 with similar associated apoptosis. bFGF had no effect on lung growth. MF-1 and DC101 had no effect. The VEGF receptor small molecule chemical inhibitors also had no effect. VEGF, but not bFGF, accelerates growth. VEGF receptor inhibitors do not block growth, suggesting that other proangiogenic factors play a role or can compensate for VEGF receptor blockade. Diffuse apoptosis, endothelial cell and pneumocyte, occurs at cessation of both normal compensatory and VEGF-accelerated growth. Angiogenesis modulators may control growth via regulation of endothelial cell proliferation and apoptosis, although the exact relationship between endothelial cells and pneumocytes has yet to be determined. The fact that bFGF did not accelerate growth in our model when it did accelerate regeneration in the liver model suggests that angiogenesis during organ regeneration is regulated in an organ-specific manner.  相似文献   

6.
7.
Angiogenesis is crucial in human development. Extravillous trophoblast (EVT) cells mimic endothelial cells in angiogenesis during endovascular differentiation, inducing a remodeling of spiral arteries that increases blood flow toward the intravillous space. We have previously shown that tumor necrosis factor (TNF) alpha regulates expression of ITGA6 and ITGA1, which are involved in cell survival, in the human EVT cell line TCL1. To further investigate endovascular differentiation, we examined the effects of vascular endothelial growth factor (VEGF), TNF, and extracellular matrix (ECM) on TCL1 cells. Seeded on Matrigel, TCL1 cells show tube-like formation that specifically recalls morphological changes in endothelial cells. Anti-ITGAV/ITGB3 antibodies significantly reduced the size of the capillary network (P < 0.05) on Matrigel and also suppressed TNF-induced apoptosis (P < 0.05) in TCL1 cells. VEGF induced expression of ITGAV/ITGB3 subunits and protein aggregation, as in the case of TNF, which in turn, induces synthesis of VEGF in TCL1 cells. Soluble FLT1 suppressed these activities in TCL1 cells, indicating that signals involving VEGF axis are essential for endovascular differentiation. These results suggest that TNF, VEGF, and ECM collaboratively regulate EVT behavior, including cell survival and endovascular differentiation, through integrin signaling during establishment and maintenance of successful human pregnancies.  相似文献   

8.
Single endothelial cells (EC) seeded in suspension culture rapidly undergo apoptosis. Addition of survival factors, such as VEGF and FGF-2, does not prevent apoptosis of suspended EC. However, when cells are allowed to establish cell–cell contacts, they become responsive to the activities of survival factors. These observations have led to the development of a three-dimensional spheroid model of EC differentiation. EC spheroids remodel over time to establish a differentiated surface layer of EC and a center of unorganized EC that subsequently undergo apoptosis. Surface EC become quiescent, establish firm cell–cell contacts, and can be induced to express differentiation antigens (e.g., induction of CD34 expression by VEGF). In contrast, the unorganized center spheroid cells undergo apoptosis if they are not rescued by survival factors. The responsiveness to the survival factor activities of VEGF and FGF-2 was not dependent on cell shape changes since it was retained after cytochalasin D treatment. Taken together, these findings characterize survival factor requirements of unorganized EC and indicate that polarized surface EC differentiate to become independent of exogenous survival factors. Furthermore, they demonstrate that spheroid cell culture systems are useful not just for the study of tumor cells and embryonic stem cells but also for the analysis of differentiated functions of nontransformed cells.  相似文献   

9.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

10.
11.
Growth factors such as basic fibroblast growth factor (bFGF) have been found to promote the survival and proliferation of endothelial cells. However, the mechanism by which growth factors control the regeneration and degeneration of the endothelial cells remained poorly understood. In this study, we demonstrated that apoptosis of murine aortic endothelial (MAE) cells was induced by deprivation of bFGF but required new RNA and protein synthesis. Furthermore, enforced expression of bcl-2 gene in MAE cells using gene transfer techniques decreased apoptosis induced by deprivation of bFGF. These findings suggest that bcl-2 interferes with a pathway for endothelial cell death that is induced by deprivation of bFGF.  相似文献   

12.
Vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen, promotes endothelial cell survival and angiogenesis. We recently showed that VEGF can support the growth of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells in serum-free medium. Reasoning that VEGF might be modulating apoptotic signal transduction pathways, we examined mechanisms involved in the anti-apoptotic effect of VEGF on starvation- and ceramide-induced apoptosis in HDMEC. We observed that VEGF ameliorated the time-dependent increase in apoptosis, as demonstrated by morphologic observations, TUNEL assay, and DNA fragmentation. On the other hand, basic fibroblast growth factor only partially prevented apoptosis in serum-starved HDMEC; platelet-derived growth factor-BB was completely ineffective. VEGF activated the phosphorylation of extracellular signal regulated kinase (ERK)1 (p44 mitogen-activated protein kinase; MAPK) and ERK2 (p42 MAPK) in a time- and concentration-dependent manner. Both the VEGF-induced activation and its anti-apoptotic effect were prevented by the specific MAPK/ERK inhibitor PD98059. The presence of VEGF also inhibited the sustained activation of stress-activated protein kinase/c-jun-NH2-kinase (SAPK/JNK) caused by serum starvation and ceramide treatment. Activation of the MAPK pathway together with inhibition of SAPK/JNK activity by VEGF appears to be a key event in determining whether an endothelial cell survives or undergoes programmed cell death.  相似文献   

13.
14.
Angiogenesis is central to both the growth and metastasis of solid tumours. Anti-angiogenic strategies result in blood vessel regression accompanied by tumour cell apoptosis. Radiotherapy and many chemotherapeutic agents kill tumours by inducing apoptotic cell death. We propose that, in addition to its role as an angiogenic factor, vascular endothelial growth factor (VEGF) can act as a survival factor for tumour cells protecting them from apoptosis. Thus anti-angiogenics, in particular those directed against VEGF, have multiple anti-tumour effects. We suggest that anti-VEGF strategies prevent vessel growth and block a tumour cell survival factor, VEGF, rendering tumour cells more sensitive to chemotherapy and radiotherapy. In addition, as chemotherapy and radiotherapy have been shown to increase VEGF expression, anti-VEGF strategies may overcome therapy- induced tumour cell resistance.  相似文献   

15.
The underlying molecular mechanism whereby hyperglycemia causes endothelial cell apoptosis is not well understood. This study aims to elucidate the role of survival factor VEGF involved in the apoptosis of endothelial cells induced by elevated glucose. The present study confirmed that high concentration of glucose (25 mmol/l) significantly increased the apoptotic cell number in cultured primary human umbilical vein endothelial cells (HUVEC). Up-regulation of Bax/Bcl-2 ratio and activation of caspase-3 induced by high glucose suggested that mitochondria apoptosis pathway was involved. High glucose significantly reduced VEGF expression in HUVEC both at mRNA and protein levels. p42/44 MAPK phosphorylation was transitory attenuated when exposed to high glucose and preceded VEGF reduction, thus suggesting down-regulation of VEGF through inhibition of p42/44 MAPK. Addition of VEGF prevented HUVEC apoptosis from high glucose exposure. Moreover, elevated reactive oxygen species (ROS) generation, calcium overload, Bax/Bcl-2 ratio, caspase-3 activation in HUVEC induced by high glucose were reversed by pre-challenge with VEGF. This may represent a mechanism for the anti-apoptotic effect of VEGF. These results suggest that down-regulation of VEGF plays a critical role in apoptosis of endothelial cells induced by high glucose and restoration of VEGF might have benefits in the early stage of diabetic endothelial dysfunction. Zhonghan Yang, Xuehua Mo, and Qing Gong have contributed equally to this study.  相似文献   

16.
Intravitreal injection (IVT) of antivascular endothelial growth factor (anti‐VEGF) agents is widely used for the treatment of retinal vascular diseases. Recently, the injection of anti‐VEGF agents in the ocular anterior chamber has been proposed for the treatment of neovascular glaucoma and potential side effects on the corneal structures have been investigated with contrasting results. Increasing evidence has demonstrated that VEGF inhibition is associated with cellular apoptotic changes and that this effect may be mediated by alterations in nerve growth factor (NGF) pathway. In this study, we demonstrated that anterior chamber injection (IC), but not IVT injection of two different anti‐VEGF agents, aflibercept and ranibizumab, affects rabbit corneal endothelium in terms of survival and apoptosis and is associated with changes in endothelial expression of NGF precursor (proNGF) and p75 neurotrophin receptor (p75NTR) receptor. We observed an increase in corneal endothelial cell incorporation of trypan blue and expression of cleaved‐caspase 3 (c‐Casp3), p75NTR, and RhoA after IC injection of both anti‐VEGF drugs when compared with the vehicle. Our results showed that apoptosis induction by aflibercept was more pronounced when compared with that of ranibizumab. Aflibercept also mediated a significant increase in endothelial expression of proNGF when compared with the vehicle. In line with these data, IC administration of both anti‐VEGF agents induced the activation of apoptotic signals in endothelial cells, including an increase in c‐Casp3, decrease in Bad Ser 112 phosphorylation, and unbalance of AKT phosphorylation. These results demonstrated that administration of anti‐VEGF in the anterior chamber of rabbit affects endothelial cell survival by inducing apoptosis through alteration of NGF pathway.  相似文献   

17.
Endothelial cell survival and apoptosis in the tumor vasculature   总被引:8,自引:0,他引:8  
Angiogenesis is essential for the growth and metastasis of solid tumors. The balance of endothelial cell (EC) proliferation and apoptosis is a major determinant in tumor angiogenesis. Recently, several studies demonstrated that numerous angiogenic factors not only induce angiogenesis but also function as EC survival factors. Vascular endothelial growth factor (VEGF), a potent angiogenic factor, is also an EC survival factor in embryonic vasculogenesis and tumor angiogenesis. VEGF activates specific intracellular survival pathways in ECs including Bcl-2, A1, IAP, Akt, and Erk. Integrins may function as EC survival factors by preventing anoikis by enhancing binding to the extracellular matrix. In addition, integrins may function in concert with VEGF to promote EC survival. Angiopoietin-1 (Ang-1) has recently been shown to stabilize EC networks by binding to the EC-specific tyrosine kinase receptor Tie-2. Pericytes also function as EC survival factors, by cell-cell contact, secretion of survival factors, or both. Targeting any of the above mechanisms for EC survival may provide novel antineoplastic strategies.  相似文献   

18.
In this study characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells (hBMCs) was investigated in relation to their capillary network formation potential. Differentiation was performed in presence of vascular endothelial growth factor (VEGF) and insulin like growth factor-1 (IGF-1). A panel of cellular and molecular markers was used for characterization of the endothelial cells. The cells were strongly positive for von Willebrand factor (vWF) and vascular endothelial growth factor receptor 2 (VEGFR2) when measured at protein and mRNA levels. Development of endothelial cells was found to be associated with formation of typical organelles such as Weibel Palade (WP) bodies, Cavealae and pinocytic vesicles. Early vessel growth was also evidenced by showing specific junctions between the cells. The migratory and angiogenic properties of the cells were confirmed by showing capillary network formation in vitro. These results indicate that the capacity of endothelial cells differentiated from hBMSCs in formation of vascular system is consistent with molecular and structural development.  相似文献   

19.
Persistent ischemia in musculocutaneous tissue may lead to wound breakdown and necrosis. The objective of this experimental study was to analyze, whether the gastric peptide ghrelin prevents musculocutaneous tissue from necrosis and to elucidate underlying mechanisms. Thirty-two C57BL/6 mice equipped with a dorsal skinfold chamber containing ischemic musculocutaneous tissue were allocated to four groups: 1) ghrelin; 2) N(ω)-nitro-l-arginine methyl ester (l-NAME); 3) ghrelin and l-NAME; and 4) control. Microcirculation, inflammation, angiogenesis, and tissue survival were assessed by fluorescence microscopy. Inducible and endothelial nitric oxide synthase (iNOS I and eNOS), vascular endothelial growth factor (VEGF), as well as nuclear factor κB (NF-κB) were assessed by Western blot analysis. Ghrelin-treated animals showed an increased expression of iNOS and eNOS in critically perfused tissue compared with controls. This was associated with arteriolar dilation, increased arteriolar perfusion, and a sustained functional capillary density. Ghrelin further upregulated NF-κB and VEGF and induced angiogenesis. Finally, ghrelin reduced microvascular leukocyte-endothelial cell interactions, apoptosis, and overall tissue necrosis (P < 0.05 vs. control). Inhibition of nitric oxide by l-NAME did not affect the anti-inflammatory and angiogenic action of ghrelin but completely blunted the ghrelin-induced tissue protection by abrogating the arteriolar dilation, the improved capillary perfusion, and the increased tissue survival. Ghrelin prevents critically perfused tissue from ischemic necrosis. Tissue protection is the result of a nitric oxide synthase-mediated improvement of the microcirculation but not due to induction of angiogenesis or attenuation of inflammation. This might represent a promising, noninvasive, and clinically applicable approach to protect musculocutaneous tissue from ischemia.  相似文献   

20.
Angiogenesis is one of essential components for the growth of neoplasms, including malignant gliomas. However, tumor vascularization is often poorly organized and marginally functional due to tumor structural abnormalities, inducing regional or temporal hypoxic conditions and nutritional shortages in tumor tissues. We investigated how during angiogenesis migrating endothelial cells survive in these hypoxic and reduced nutritional conditions. Human brain microvascular endothelial cells (HBMECs) underwent apoptosis and necrosis after serum withdrawal. This endothelial cell death was blocked by recombinant VEGF protein or the culture medium of U251 glioma cells exposed to hypoxia (H-CM). Hypoxic treatment increased vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF-alpha) expression in U251 glioma cells. H-CM activated nuclear factor-kappaB (NFkappaB) protein and increased the gene expression of antiapoptotic factors including Bcl-2, Bcl-X(L), survivin and X-chromosome-linked inhibitor of apoptosis protein (XIAP) in endothelial cells. The survival activity of H-CM for endothelial cells was abolished by two kinds of VEGF inhibitors {Cyclopeptidic VEGF inhibitor and a VEGF receptor tyrosine kinase inhibitor (4-[(4'-chloro-2'-fluoro) phenylamino]-6, 7-dimethoxyquinazoline)} or NFkappaB inhibitors (ALLN and BAY 11-7082). These VEGF inhibitors did not block the activation of NFkappaB induced by H-CM in endothelial cells. On the contrary, TNF-alpha antagonist WP9QY enhanced the survival activity of H-CM for endothelial cells and blocked NFkappaB activation induced by H-CM under serum-starved conditions. Taken together, our data suggest that both the secretion of VEGF from glioma cells and activation of NFkappaB in endothelial cells induced by TNF-alpha are necessary for endothelial cell survival as they increase the expression of antiapoptotic genes in endothelial cells under conditions of serum starvation. These pathways may be one of the mechanisms by which angiogenesis is maintained in glioma tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号