首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
While forest communities are changing as a result of global environmental change, the impacts of tree species shifts on ecosystem services such as carbon storage are poorly quantified. In many parts of the eastern United States (US), more xeric-adapted oak-hickory dominated stands are being replaced with mesic beech-maple assemblages. To examine the possible impacts of this ongoing change in forest composition, we investigated how two wide-ranging and co-occurring eastern US species – Acer saccharum (sugar maple) and Quercus alba (white oak) – respond to interannual climate variability. Using 781 tree cores from 418 individual trees at 18 locations, we found late-growing season drought reduced A. saccharum growth more than that of Q. alba. A gradient in the growth reduction across latitude was also found in A. saccharum, where southern populations of A. saccharum experienced greater reductions in growth during drought. Drought had a legacy effect on growth for both species, with drought occurring later in the growing season having a larger legacy effect. Consequently, as forests shift from oak to maple dominance, drought in the later part of the growing season is likely to become an increasingly important control on forest productivity. Thus, our findings suggest that co-occurring species are responding to environmental conditions during different times in the growing season and, therefore, the timing of drought conditions will play an important role in forest productivity and carbon sequestration as forest species composition changes. These findings are particularly important because the projected increases in potential evapotranspiration, combined with possible changes in the seasonality of precipitation could have a substantial impact on how tree growth responds to future climatic change.  相似文献   

2.
Moisture availability is a key factor that influences white oak (Quercus alba L.) growth and wood production. In unglaciated eastern North America, available soil moisture varies greatly along topographic and edaphic gradients. This study was aimed at determining the effects of soil moisture variability and macroclimate on white oak growth in mixed-oak forests of southern Ohio. Using accurately dated and measured tree rings, we analyzed 119 white oaks growing across an integrated moisture index (IMI), a computer-generated GIS model that simultaneously combines topographic and edaphic features into a moisture index scale. Growth trends varied considerably across the IMI, with trees in mesic sites exhibiting patterns much different from those in either xeric or intermediate sites. BAI growth and biomass increments were higher for trees growing in the intermediate and mesic sites than those from the xeric sites. Correlation and response function analyses, and redundancy analysis revealed significant relations between ring-width indices and climate, with current year May–July PDSI, precipitation and temperature as the most important correlates of white oak growth. Additionally, climatic influences on growth rate were variable across the IMI; trees in xeric sites showed much greater coefficients relative to those from the intermediate and mesic sites. Despite these differences, xeric and intermediate trees exhibited similar growth patterns. The present results provide further evidence of the usefulness of the IMI for identifying and comparing white oak growth patterns across the complex, dissected landscape of southern Ohio.  相似文献   

3.
Taylor  Scott O.  Lorimer  Craig G. 《Plant Ecology》2003,167(1):71-88
Gap capture methods predict future forest canopy species composition from the tallest trees growing in canopy gaps rather than from random samples of shaded understory trees. We used gap capture methods and a simulation approach to forecast canopy composition in three old oak forests (Quercus spp.) on dry-mesic sites in southern Wisconsin, USA. In the simulation, a gap sapling is considered successful if it exceeds a threshold height of 13–17 m (height of maximum crown width of canopy trees) before its crown center can be overtopped by lateral crown growth of mature trees. The composition of both the tallest gap trees and simulated gap captures suggests that 68–90% of the next generation of canopy trees in the stands will consist of non-Quercus species, particularly Ulmus rubra, Carya ovata and Prunus serotina. Quercus species will probably remain as a lesser stand component, with Quercus alba and Quercus rubra predicted to comprise about 19% of successful gap trees across the three stands. Several methods of predicting future canopy composition gave similar results, probably because no gap opportunist species were present in these stands and there was an even distribution of species among height strata in gaps. Gap trees of competing species already average 11–13 m tall, and mean expected time for these trees to reach full canopy height is only 19 years. For these reasons, we suggest that dominance will shift from oaks to other species, even though late successional species (e.g., Acer and Tilia) are not presently common in the understories of these stands.  相似文献   

4.
Summary This study examines the role of canopy trees in the formation and maintenance of different herb microhabitats in a mixed mesophytic forest stand. Herb abundance and reproductive success were recorded in 54 circular plots under seven species of canopy trees and in 15 circular control plots>2 m from any tree. Soil moisture, soil nutrient levels, litter depth, and light intensity were measured in a subset of these plots. Ordination of plots by both herb relative abundance and by reproductive success of common species indicated that herb assemblages under most canopy tree species were similar to those away from trees. However, herb assemblages under Fagus grandifolia trees differed moderately from the others while plots under Quercus alba trees supported significantly different herb assemblages. Analyses of variance revealed that several herb species occurred at significantly closer mean distance to the base of Q. alba or Fagus trees or at higher densities under these tree species. Soils around Q. alba trees had significantly higher concentrations of calcium and sulfate ions, and higher pH than plots under other tree species and control plots. This correlated closely with Q. alba stemflow which had higher concentrations of calcium and sulfate ions and lower concentrations of hydrogen ions than stemflow from other trees at this site. The slightly lower soil pH near the base of Fagus trees may have been related to the high volumes of stemflow produced by this species. Stepwise regression showed significant correlations between abundances of five common herb species and soil nutrient patterns. Maintenance of spatial heterogeneity in forest floor resources by the presence of different species of canopy trees may therefore be important in the maintenance of diversity in these understory herb communities.  相似文献   

5.
The woody vegetation and associated soil-site variables from a range of upland to swamp sites were measured using 480 0.04 ha plots from Little Black Slough, Goose Pond and Horseshoe Lake in Illinois, and Mingo Wildlife Refuge, Missouri. Multiple regression, correlation, and factor analysis were used to relate soil-site data to vegetation structure and composition. Coenoclines of both the understory and overstory were constructed to represent the upland-swamp vegetation gradient of the region near the northern terminus of the southern floodplain forest. Percent sand, depth of flooding, and silt content were variables most strongly related to the understory coenocline. Depth of flooding, and clay content were most strongly related to the overstory coenocline. Beta diversities of the understory and overstory coenoclines were 5.8 and 6.9HC. Understory density and overstory basal area increased and species richness and heterogeneity decreased along the upland-swamp gradient.Classification techniques identified three or four major overstory vegetation types within each study area. The 15 overstory types were ordinated and environmental characteristics summarized for each. Mingo Wildlife Refuge had the least flooding and lowest soil clay content. Classification of all 480 plots from the four study areas identified three major understory groups (mesic, floodplain and swamp) and eight overstory groups. These eight include aQuercus velutina-Q. alba, Quercus rubra-Q. alba, Liquidambar styraciflua-Ulmus americana, Quercus phellos-Q. palustris, Quercus lyrata-Acer rubrum, Acer rubrum-Nyssa aquatica, Nyssa aquatica-Taxodium distichum and aTaxodium distichum-Nyssa aquatica type arranged from upland to swamp.Botanical nomenclature follows Mohlenbrock (1975).Horseshoe Lake and Little Black Slough studies were supported, in part, by McIntire-Stennis Grants to PAR through the Department of Forestry, Southern Illinois University. The Department of Botany, Southern Illinois University provided support for the studies in Goose Pond, Illinois and Mingo Wildlife Refuge, Missouri. We thank Chris Baker and especially Claudia Mitchell for aid in data acquisition and analysis.  相似文献   

6.

Key message

The understory evergreen trees showed maximal photosynthetic capacity in winter, while the overstory deciduous trees showed this capacity in spring. The time lag in productive ecophysiologically active periods between deciduous overstory and evergreen understory trees in a common temperate forest was clearly related to the amount of overstory foliage.

Abstract

In temperate forests, where deciduous canopy trees and evergreen understory trees coexist, understory trees experience great variation in incident radiation corresponding to canopy dynamics represented by leaf-fall and leaf-out. It is generally thought that changes in the light environment affect understory plants’ ecophysiological traits. Thus, to project and estimate annual energy, water, and carbon exchange between forests and the atmosphere, it is necessary to investigate seasonal variation in the ecophysiological activities of both evergreen trees in the understory and deciduous trees that make up the canopy/overstory. We conducted leaf-scale gas-exchange measurements and nitrogen content analyses for six tree species along their heights throughout a complete year. Photosynthetic capacity as represented by the maximum carboxylation rate (V cmax25) and photosynthetic nitrogen use efficiency (PNUE) of deciduous canopy trees peaked immediately after leaf-out in late May, declined and stabilised during the mid-growing season, and drastically decreased just before leaf-fall. On the other hand, the timing of lowest V cmax25 and PNUE for evergreen understory trees coincided with that of the highest values for canopy trees. Furthermore, understory trees’ highest values appeared just before canopy tree leaf-out, when incident radiation in the understory was highest. This implies that failing to consider seasonal variation in leaf ecophysiological traits for both canopy and understory trees could lead to serious errors in estimating ecosystem productivity and energy balance for temperate forests.
  相似文献   

7.
This study investigates the understory dynamics of two mixed-oak stands following fire of varying intensity. Composition and diversity of woody and herbaceous species in the understory were measured in two stands 7–8 years after a prescribed burn. On both sites, unburned areas, low-intensity fire areas, and areas where the overstory had been severely damaged were measured. Patterns of species presence and absence following fire were consistent with an initial-floristics model. Most species increased in density and frequency following fire; onlyAralia nudicaulis andQuercus alba showed statistically significant decreases in density. Overall, 29 species increased in density following fire, while 8 declined; 29 species increased in frequency, while 6 declined. However, diversity and equitability measures were depressed on the moderately burned sites, due to rapid regrowth ofKalmia latifolia. Ordination using binary discriminant analysis suggested species responded individualistically to both burning and site variation.  相似文献   

8.
Species interactions and their indirect effects on the availability and distribution of resources have been considered strong determinants of community structure in many different ecological systems. In deciduous forests, the presence of overstory trees and shrubs creates a shifting mosaic of resources for understory plants, with implications for their distribution and abundance. Determination of the ultimate resource constraints on understory vegetation may aid management of these systems that have become increasingly susceptible to invasions by non-native plants. Microstegium vimineum (Japanese grass) is an invasive annual grass that has spread rapidly throughout the understory of forests across the eastern United States since it was first observed in Tennessee in 1919. M. vimineum occurs as extensive, dense patches in the understory of eastern deciduous forests, yet these patches often exhibit sharp boundaries and distinct gaps in cover. One example of this distributional pattern was observed relative to the native midstory tree Asimina triloba (pawpaw), whereby dense M. vimineum cover stopped abruptly at the drip line of the A. triloba patch and was absent beneath the A. triloba canopy. We conducted field and greenhouse experiments to test several hypotheses regarding the causes of this observed pattern of M. vimineum distribution, including allelopathy, seed dispersal, light limitations, and soil moisture, texture, and nutrient content. We concluded that light reduction by the A. triloba canopy was the environmental constraint that prevented establishment of M. vimineum beneath this tree. Whereas overstory tree canopy apparently facilitates the establishment of this shade-tolerant grass, the interaction of overstory canopy with midstory canopy interferes with M. vimineum by reducing the availability of sunflecks at the ground layer. It is likely that other midstory species influence the distribution and abundance of other herb-layer species, with implications for management of understory invasive plant species.  相似文献   

9.
The objective of this research was to determine whether the dendroclimatic responses of young Quercus alba (aged 29–126 years) differ from those of old Q. alba (149–312 years). We collected Q. alba increment cores across a range of size classes from Buffalo Mountain Natural Area Preserve, an oak-hickory forest in southcentral Virginia, USA. Tree cores were crossdated and raw ring widths were detrended to remove the influence of increasing circumference with age, microsite, and local stand dynamics. Standardized ring widths were averaged to develop two master chronologies from the 20 oldest and youngest trees. Ring-width indices were correlated with temperature, precipitation, and Palmer Drought Severity Index (PDSI). Annual tree-ring growth in old and young Q. alba was significantly correlated with precipitation from the previous growing season, but was not significantly correlated with temperature. Only the old trees showed a significant correlation between annual ring width and PDSI. These results may indicate that growth in old trees is more sensitive to drought than in young trees. If future climate change includes the predicted increase in mid-growing season droughts, tree-level responses are likely to be age-dependent with older trees experiencing relatively greater reductions in growth.  相似文献   

10.
Aim The objectives of this study were: (1) to compare radial growth patterns between white oak (Quercus alba L.) and northern red oak (Quercus rubra L.) growing at the northern distribution limit of white oak; and (2) to assess if the radial growth of white oak at its northern distribution limit is controlled by cold temperature. Location The study was conducted in three regions of the Ottawa valley in southern Québec. All stands selected were located at the northern limit of distribution of Q. alba. Methods Twelve mixed red and white oak stands were sampled and increment cores were extracted for radial growth analyses. For each oak species, 12 chronologies were derived from tree‐ring measurement (residual chronologies). Principal components analysis and redundancy analysis were used to highlight the difference between radial growth in both species and to determine their radial growth–climate association. Results There was little difference between the radial growth of each species; Q. alba, however, exhibits more year‐to‐year variation in growth than Q. rubra. More than 65% of the variance in radial growth was shared among sites and species. Both species showed a similar response to climate, which suggested that the limit of distribution of Q. alba might not be determined by effects on growth. Both species had a classic response to climate and drought in the early growing season. Main conclusions The northern distribution limit of Q. alba does not appear to be directly controlled by effects on growth processes as indicated by the similarities in radial growth and response to climate between the two species. The location of the stands on southern aspects suggested that cold temperature could have been a major factor controlling the distribution limit of Q. alba. However, it is speculated that stands growing on southern aspects may be more prone to forest fires or to drought, which would favour the maintenance and establishment of oaks, and of Q. alba in particular. Models relating the northern distribution limits of species to broad climate parameters like annual mean temperature will need to be reviewed to incorporate more biologically relevant information. Such assessments will in turn provide better estimates of the effect of climate changes on species distribution.  相似文献   

11.
Canopy transpiration of mature Jeffrey pine was compared in "mesic" and "xeric" microsites differing in topographical position, bole growth, and the level of drought stress experienced. Diurnal and seasonal course of canopy transpiration was monitored with thermal dissipation probes in 1999 and 2000. Mid-canopy measures of diurnal foliar stomatal conductance (gs) were taken in June and August in 1999. In early summer, there was little difference between trees in either microsite with regard to gs (55 mmol H2O m−2s−1), canopy transpiration (4.0 l h−1), and total duration of active transpiration (12 h >0.03 l h−1). In late summer, xeric trees had a lower daily maximum gs (by 30%), a greater reduction in whole canopy transpiration relative to the seasonal maximum (66 vs 79%), and stomata were open 2 h less per day than in mesic trees. Based on leaf-level gas exchange measurements, trees in mesic sites had an estimated 46% decrease in O3 uptake from June to August. Xeric trees had an estimated 72% decrease over the same time period. A multivariate analysis of morphological and tissue chemistry attributes in mid-canopy elucidated differences in mesic and xeric tree response. Mesic trees exhibited more O3 injury than xeric trees based on reduced foliar nitrogen content and needle retention in mid-canopy.  相似文献   

12.
To investigate differences in leaf structure, chlorophyll and nutrients on terminal branches of the understory tree Asimina triloba, the first (proximal) and the last (distal) leaves to develop in the spring were compared. Proximal leaf expansion was completed before the overstory canopy was fully closed but distal leaf expansion occurred during and after the development of the overstory canopy. Fully expanded proximal leaves were 76% smaller in area, were 18% thicker and had 36% more stomates per m of leaf area when compared to distal leaves. In addition, maximum stomatal conductance to water vapor was greater (150 vs. 120 mmol m−-2s−-1) and the minimum PPFD required for maximum conductance was higher (200 vs. 150 μmol m−-2s−-1) for the proximal leaves. Chlorophyll content was also greater for proximal leaves, but nitrogen and phosphorus contents were lower throughout the entire summer. Seasonal measurements indicated an increase in chlorophyll a content and reductions in nitrogen content throughout the summer growth period for leaves from both positions. The results suggest that distal and proximal leaves differed physiologically and that the measured differences were related to the changing irradiance environment during leaf development. The time of leaf expansion, as indicated by leaf position on the branch, may be an important consideration when examining the water and photosynthetic relations of understory trees.  相似文献   

13.
I investigated competition for light between canopy plants and juvenile valley oaks (Quercus lobata Nee) in a mixed-broadleaf woodland of California's northern Coast Ranges. Canopy effects on understory light supply were separated among the overlying adult valley oak, the adult's woody understory, and neighboring trees and shrubs through a series of light sampling surveys and measurements of the number, size, and spatial distribution of neighboring plants. Light supply in the understory was primarily influenced by neighboring plants, with no detectable effect of the overlying adult valley oak. Light supply in the understory averaged 25% full sun due to a high frequency of canopy gaps and a typically open understory. Seedling response to understory light supply was investigated in an experimental sunfleck gradient (10%, 19%, and 100% full sun). Between 10% and 100% full sun, seedling growth increased by 90% and the shoot:∗∗∗root ratio changed from 1.561 to 0.607. Shade seedlings were also taller and produced fewer, larger, and thinner leaves than seedlings grown in full sun. A field survey of the spatial distribution and crown morphology of saplings and young adults found 1) the distance between young valley oaks and neighboring overstory trees to increase with neighbor size, and 2) crowns of the young oaks to be skewed away from neighbors. Although shading by the canopy was only moderate, canopy effects on understory light supply may restrict juvenile recruitment of valley oak in this woodland.  相似文献   

14.
African pencil cedar (Juniperus procera Hochst. ex Endlicher 1847) is a tropical, irregularly growing species that can produce annual growth rings in response to an annual cycle of wet and dry seasons. In this paper, we assess the periodicity of growth-ring formation for 13 stem discs from a site in Central-Northern Ethiopia by crossdating and radiocarbon dating. The crossdating process is described more transparently than usual to allow open discussion of the methodology employed. Although the ring-width series could be tentatively matched, radiocarbon dating revealed that the growth rings of the junipers from the studied site are neither annual nor represent a common periodicity. It was found that the trees are exceptionally sensitive and respond individually to the complex local climate. For future research, it is recommended to select more mesic sites with an unambiguously unimodal rainfall regime and to gain external evidence to support assumptions about the periodicity of growth-ring formation in Juniperus procera.  相似文献   

15.
The size structure transition matrices ofPicea jezoensis, Picea glehnii andAbies sachalinensis of a sub-boreal forest in Hokkaido, northern Japan were constructed based on the demography of each species (Picea jezoensis andPicea glehnii were dealt with together asPicea) during a 4-year period. Two types of matrices, density-independent and density-dependent population dynamics models, were investigated for evaluating the ‘waiting pattern’ betweenPicea spp. andA. sachalinensis. For the density-dependent model, it was assumed that the demographic traits of understory trees, the recruitment rate, the understory mortality rate and the transition probability from the understory to canopy stages, were regulated by the one-sided competitive effect of canopy trees. The observed size structure ofPicea was almost consistent with the stationary size structure obtained in both the density-independent and the density-dependent models, whereas the observed size structure ofA. sachalinensis was not realized in the two models. The effects of both the transition probability from the understory to canopy stages and the recruitment rate on the dynamics of canopy trees were investigated. ForPicea, two parameters—recruitment rate (e i ) and transition probability from the understory to canopy stages-exponentially affected the dynamics of canopy trees. In contrast, forAbies sachalinensis, the two parameters affected linearly the dynamics of canopy trees. In conclusion, the population dynamics ofPicea andA. sachalinensis was determined by the parameters of the recruitment rate and the transition probability from the understory to canopy stages, relating to waiting patterns of understory trees for future gap formation. InPicea, the demographic parameters of understory trees intensively regulated the dynamics of canopy trees if compared withA. sachalinensis, suggesting that the performance of understory trees plays a key role in the population dynamics ofPicea. This reflects the growth pattern of understory trees in the regeneration of the two species.  相似文献   

16.
Canopy trees are largely responsible for the environmental heterogeneity in the understory of tropical and subtropical species‐rich forests, which in turn may influence sapling community dynamics. We tested the effect of the specific identity of four cloud forest canopy trees on total solar radiation, canopy openness, soil moisture, litter depth, and soil temperature, as well as on the structure and dynamics of the sapling community growing beneath their canopies. We observed significant effects of the specific identity of canopy trees on most understory microenvironmental variables. Soil moisture was higher and canopy openness lower beneath Cornus disciflora. In turn, canopy openness and total solar radiation were higher beneath Oreopanax xalapensis, while the lowest soil moisture occurred beneath Quercus laurina. Moreover, Chiranthodendron pentadactylon was the only species having a positive effect on litter depth under its canopy. In spite of these between‐species environmental differences, only C. pentadactylon had significant, negative effects on sapling density and species richness, which may be associated to low seed germination and seedling establishment due to an increased litter depth in its vicinity. The relevance of the specific identity of canopy trees for natural regeneration processes and species richness maintenance depends on its potential to differentially affect sapling dynamics through species‐specific modifications of microenvironmental conditions.  相似文献   

17.
Abstract. Recent disturbance models have identified changes in resource availability as factors that control plant community response. Soil nutrient resources typically are assumed to change following forest disturbance, usually with nutrient availablity increasing initially and subsequently decreasing through later stages of succession. We examined the effects of disturbance (clearcut harvesting with a brief recovery period) on soil organic matter, pH and extractable soil nutrients in successional aspen forests of northern lower Michigan to determine relationships of these variables to changes in herbaceous layer vegetation. Two site types were identified: drymesic (glacial outwash sands, low in organic matter) and mesic (calcareous clay till, high in organic matter). Extractable nutrient concentrations were 1.5 to 3 times higher in the A1 horizon of mesic sites than those of dry-mesic sites. Soil pH and cations increased after disturbance on mesic sites, but not on dry-mesic sites. Patterns of change with disturbance were less pronounced in lower horizons on both site types. Herblayer species diversity increased after disturbance on mesic sites, but with decreases in the importance of shade-tolerant tree species and Maianthemum canadense. Species characteristic of open habitats (e.g. Pteridium aquilinum, Rubus spp., Fragaria virginiana, and Diervilla lonicera), increased in importance. Soil factors, species composition and diversity on dry-mesic sites changed little after disturbance, with Pteridium aquilinum and ericaceous species remaining dominant in both mature (55–82 yr) and disturbed (≤ 15 yr) stands. These results suggest that soil nutrient resources do not always change through secondary succession and that patterns of change can be distinctly site-dependent. Disturbance response patterns in the herbaceous layer of these aspen forests are also site-dependent.  相似文献   

18.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

19.
Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil‐plant‐atmosphere (SPA) model to leaf and stand‐scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. Vcmax and Jmax) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ~23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co‐limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought‐tolerant behaviour that contrasted with mesic trees' drought‐avoidance behaviour.  相似文献   

20.
Climate response among growth increments of fish and trees   总被引:2,自引:0,他引:2  
Significant correlations were found among the annual growth increments of stream fish, trees, and climate variables in the Ozark region of the United States. The variation in annual growth increments of rock bass (Ambloplites rupestris) from the Jacks Fork River was significantly correlated over 22 years with the ring width of four tree species: white oak (Quercus alba), post oak (Quercus stellata), shortleaf pine (Pinus echinata) and eastern red cedar (Juniperus virginiana). Rock bass growth and tree growth were both significantly correlated with July rainfall and stream discharge. Variations in annual growth of smallmouth bass (Micropterus dolomieu) from four streams were significantly correlated over 29 years (1939–1968) with mean May maximum air temperature but not with tree growth. The magnitude and significance of correlations among growth increments from fish and trees imply that conditions such as topography, stream gradient, organism age, and the distribution of a population relative to its geographic range can influence the climatic response of an organism. The timing and intensity of climatic variables may produce different responses among closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号