首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The photosynthetic responses of clusterbean (Cyamopsis tetraganoloba) cotyledons exposed to UV-A, UV-B or UV-A + UV-B radiation for 1 h daily until day 10 have been compared. The loss in the rate of O2 evolution and CO2 assimilation (P n) are incommensurate with each other in both UV-A and UV-B exposed samples indicating the occurrence of loss in photostasis of photosynthesis by these two radiation bands. The alteration in redox status of Q A further suggests about a loss in redox homeostasis in the photosynthetic electron transport chain. However, both photochemical efficiency of PS II and P n are well maintained in UV-A + UV-B exposed cotyledons in spite of reduction in water-use efficiency. The acclimatization of clusterbean cotyledon to UV-B radiation in the presence of UV-A has been attributed to accumulation of flavonoids, increase in stomatal conductance (g s) and reduction in functional size of PS II.  相似文献   

2.
3.
Shiguo Chen 《BBA》2007,1767(4):306-318
Tenuazonic acid (TeA) is a natural phytotoxin produced by Alternaria alternata, the causal agent of brown leaf spot disease of Eupatorium adenophorum. Results from chlorophyll fluorescence revealed TeA can block electron flow from QA to QB at photosystem II acceptor side. Based on studies with D1-mutants of Chlamydomonas reinhardtii, the No. 256 amino acid plays a key role in TeA binding to the QB-niche. The results of competitive replacement with [14C]atrazine combined with JIP-test and D1-mutant showed that TeA should be considered as a new type of photosystem II inhibitor because it has a different binding behavior within QB-niche from other known photosystem II inhibitors. Bioassay of TeA and its analogues indicated 3-acyl-5-alkyltetramic and even tetramic acid compounds may represent a new structural framework for photosynthetic inhibitors.  相似文献   

4.
Rémy Beauchemin 《BBA》2007,1767(7):905-912
Polyamines are implicated in plant growth and stress response. However, the polyamines spermine and spermidine were shown to elicit strong inhibitory effects in photosystem II (PSII) submembrane fractions. We have studied the mechanism of this inhibitory action in detail. The inhibition of electron transport in PSII submembrane fractions treated with millimolar concentrations of spermine or spermidine led to the decline of plastoquinone reduction, which was reversed by the artificial electron donor diphenylcarbazide. The above inhibition was due to the loss of the extrinsic polypeptides associated with the oxygen evolving complex. Thermoluminescence measurements revealed that charge recombination between the quinone acceptors of PSII, QA and QB, and the S2 state of the Mn-cluster was abolished. Also, the dark decay of chlorophyll fluorescence after a single turn-over white flash was greatly retarded indicating a slower rate of QA reoxidation.  相似文献   

5.
Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (QA) of photosystem (PS) II [C. Vernotte, A.L. Etienne, J.-M. Briantais, Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta 545 (1979) 519-527]. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 μs to 5 s). The about 20% lowering of the maximum fluorescence yield FM, observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH2 by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH2 starts getting reoxidised by PS I activity. NAD(P)H-dependent restoration of FM was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl2 that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of FM. Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F0 allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F0 level (Q0) and to compare it with the fractional quenching at the FM level (QM). The experimentally determined Q0/QM ratios were found to be equal to the corresponding F0/FM ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.  相似文献   

6.
We studied the kinetics of reoxidation of the phylloquinones in Chlamydomonas reinhardtii Photosystem I using site-directed mutations in the PhQA-binding site and of the residues serving as the axial ligand to ec3A and ec3B chlorophylls. In wild type PS I, these kinetics are biphasic, and mutations in the binding region of PhQA induced a specific slowing down of the slow component. This slowing allowed detection of a previously unobserved 180-ns phase having spectral characteristics that differ from electron transfer between phylloquinones and FX. The new kinetic phase thus reflects a different reaction that we ascribe to oxidation of FX by the FA/B FeS clusters. These absorption changes partly account for the differences between the spectra associated with the two kinetic components assigned to phylloquinone reoxidation. In the mutant in which the axial ligand to ec3A (PsaA-Met688) was targeted, about 25% of charge separations ended in P700+A0 charge recombination; no such recombination was detected in the B-side symmetric mutant. Despite significant changes in the amplitude of the components ascribed to phylloquinone reoxidation in the two mutants, the overall nanosecond absorption changes were similar to the wild type. This suggests that these absorption changes are similar for the two different phylloquinones and that part of the differences between the decay-associated spectra of the two components reflect a contribution from different electron acceptors, i.e. from an inter-FeS cluster electron transfer.  相似文献   

7.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

8.
Based on the electron-transport properties on the reducing side of the reaction center, photosystem II (PS II) in green plants and algae occurs in two distinct forms. Centers with efficient electron-transport from QA to plastoquinone (QB-reducing) account for 75% of the total PS II in the thylakoid membrane. Centers that are photochemically competent but unable to transfer electrons from QA to QB (QB-nonreducing) account for the remaining 25% of total PS II and do not participate in plastoquinone reduction. In Dunaliella salina, the pool size of QB-nonreducing centers changes transiently when the light regime is perturbed during cell growth. In cells grown under moderate illumination intensity (500 E m-2s-1), dark incubation induces an increase (half-time 45 min) in the QB-nonreducing pool size from 25% to 35% of the total PS II. Subsequent illumination of these cells restores the steady-state concentration of QB-nonreducing centers to 25%. In cells grown under low illumination intensity (30 µE m–2s–1), dark incubation elicits no change in the relative concentration of QB-nonreducing centers. However, a transfer of low-light grown cells to moderate light induces a rapid (half-time 10 min) decrease in the QB-nonreducing pool size and a concomitant increase in the QB-reducing pool size. These and other results are explained in terms of a pool of QB-nonreducing centers existing in a steady-state relationship with QB-reducing centers and with a photochemically silent form of PS II in the thylakoid membrane of D. salina. It is proposed that QB-nonreducing centers are an intermediate stage in the process of damage and repair of PS II. It is further proposed that cells regulate the inflow and outflow of centers from the QB-nonreducing pool to maintain a constant pool size of QB-nonreducing centers in the thylakoid membrane.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - Fo non-variable fluorescence yield - Fpl intermediate fluorescence yield plateau level - Fmax maximum fluorescence yield - Fi mitial fluorescence yield increase from Fo to Fpl(Fpl-Fo) - Fv total variable fluorescence yield (Fmax-Fo) - DCMU dichlorophenyl-dimethylurea  相似文献   

9.
Alain Gauthier 《BBA》2006,1757(11):1547-1556
The flash-induced thermoluminescence (TL) technique was used to investigate the action of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) on charge recombination in photosystem II (PSII). Addition of low concentrations (μM range) of TMPD to thylakoid samples strongly decreased the yield of TL emanating from S2QB and S3QB (B-band), S2QA (Q-band), and YD+QA (C-band) charge pairs. Further, the temperature-dependent decline in the amplitude of chlorophyll fluorescence after a flash of white light was strongly retarded by TMPD when measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Though the period-four oscillation of the B-band emission was conserved in samples treated with TMPD, the flash-dependent yields (Yn) were strongly declined. This coincided with an upshift in the maximum yield of the B-band in the period-four oscillation to the next flash. The above characteristics were similar to the action of the ADRY agent, carbonylcyanide m-chlorophenylhydrazone (CCCP). Simulation of the B-band oscillation pattern using the integrated Joliot-Kok model of the S-state transitions and binary oscillations of QB confirmed that TMPD decreased the initial population of PSII centers with an oxidized plastoquinone molecule in the QB niche. It was deduced that the action of TMPD was similar to CCCP, TMPD being able to compete with plastoquinone for binding at the QB-site and to reduce the higher S-states of the Mn cluster.  相似文献   

10.
11.
Xiao-Min Gong  Tal Lev  Chanoch Carmeli 《BBA》2009,1787(2):97-104
Photosystem I (PS I) mediates light-induced electron transfer from P700 through a chlorophyll a, a quinone and a [4Fe-4S] iron-sulfur cluster FX, located on the core subunits PsaA/B to iron-sulfur clusters FA/B on subunit PsaC. Structure function relations in the native and in the mutant (psaB-C565S/D566E) of the cysteine ligand of FX cluster were studied by X-ray absorption spectroscopy (EXAFS) and transient spectroscopy. The structure of FX was determined in PS I lacking clusters FA/B by interruption of the psaC2 gene of PS I in the cyanobacterium Synechocystis sp PCC 6803. PsaC-deficient mutant cells assembled the core subunits of PS I which mediated electron transfer mostly to the phylloquinone. EXAFS analysis of the iron resolved a [4Fe-4S] cluster in the native PsaC-deficient PS I. Each iron had 4 sulfur and 3 iron atoms in the first and second shells with average Fe-S and Fe-Fe distances of 2.27 Å and 2.69 Å, respectively. In the C565S/D566E serine mutant, one of the irons of the cluster was ligated to three oxygen atoms with Fe-O distance of 1.81 Å. The possibility that the structural changes induced an increase in the reorganization energy that consequently decreased the rate of electron transfer from the phylloquinone to FX is discussed.  相似文献   

12.
When the photosystem II quinone acceptor complex has been singly reduced to the state QAQ?B, there is a 22 s half-time back-reaction of Q?B with an oxidized photosystem II donor (S2), directly measured here for the first time. From the back-reaction kinetics with and without inhibitors, kinetic and equilibrium parameters have been estimated. We suggest that the state QAQ?B of the complex is formed by a second-order reaction of vacant reaction centers in the state Q?A with plastoquinone from the pool, and discuss the physico-chemical parameters involved.  相似文献   

13.
Oxygen evolving photosystem II particles were exposed to 100 and 250 W m–2 white light at 20°C under aerobic, anaerobic and strongly reducing (presence of dithionite) conditions. Three types of photoinactivation processes with different kinetics could be distinguished: (1) The fast process which occurs under strongly reducing (t 1/21–3 min) and anaerobic conditions (t 1/24–12 min). (2) The slow process (t 1/215–40 min) and (3) the very slow process (t 1/2>100 min), both of which occur under all three sets of conditions.The fast process results in a parallel decline of variable fluorescence (F v) and of Hill reaction rate, accompanied by an antiparallel increase of constant fluorescence (F o). We assume that trapping of QA in a negatively charged stable state, (QA )stab, is responsible for the effects observed.The slow process is characterized by a decline of maximal fluorescence (F m). In presence of oxygen this decline is due to the well known disappearance of F v which proceeds in parallel with the inhibition of the Hill reaction; F o remains essentially constant. Under anaerobic and reducing conditions the decline of F m represents the disappearance of the increment in F o generated by the fast process. We assume that the slow process consists in neutralization of the negative charge in the domain of QA in a manner that renders QA non-functional. The charge separation in the RC is still possible, but energy of excitation becomes thermally dissipated.The very slow photoinactivation process is linked to loss of charge separation ability of the PS II RC and will be analyzed in a forthcoming paper.Abbreviations F chlorophyll a fluorescence - F o, F v, F m constant, variable, maximum fluorescence - F o, F v, F m the same, measured in presence of dithionite (F v suppression method) - PS II photosystem II - RC reaction centre (P680. Pheo) - P680 primary electron donor - Pheo pheophytin, intermediary electron acceptor - QA, QB the primary and secondary electron acceptor - Z, D electron donors to P680 - (QA)stab, (QA H)stab hypothetical modifications of QA resulting from photoinactivation - O-, A- and R-conditions aerobic, anaerobic and strongly reducing (presence of dithionite) conditions - MES 2-(N-morpholine) ethanesulphonic acid - DCPIP 2,6-dichlorphenolindophenol - GGOC mixture of glucose, glucose oxidase and catalase - DT-20 oxygen-evolving PS II particles  相似文献   

14.
Variable chlorophyll a (Chl a) fluorescence is composed of a photochemical and a thermal phases of similar amplitudes. The photochemical phase can be induced by a saturating single turnover flash (STF) and reflects the reduction of the Photosystem II (PS II) QA primary electron acceptor. The thermal phase requires multiple turnover flash (MTF) and is somehow related to the reduction of the plastoquinone (PQ) molecules. This article aimed to determine the relative contributions of the QB-bound and the free oxidized PQ molecules to the thermal phase of Chl a fluorescence. We thus measured the interactive effects of exogenous PQ (PQex), of an inhibitor (DCMU) acting at the QB site of PS II and of an artificial quencher, 2-methyl-1,4-naphtoquinone, on Chl a fluorescence levels induced by STF (FF) and MTF (FM) in spinach thylakoids. We observed that: (1) the incorporation of PQex in thylakoids stimulated photosynthetic electron transport but barely affected FF and FM in the absence of DCMU; (2) DCMU significantly increased the amplitude of FF but slightly quenched FM; (3) 2-methyl-1,4-naphtoquinone quenched FM to a larger-extent than FF; (4) DCMU increased the quenching effects of PQex on FF and FM and also, of methyl-1,4-naphtoquinone on FF. These results indicate that: (1) the QB-bound and the free PQ molecules contribute to about 56% and 25%, respectively, to the thermal phase Chl a fluorescence in dark-adapted thylakoids; and (2) the thermal phase of Chl a fluorescence is more susceptible than the photochemical phase to the non-photochemical quenching effect of oxidized quinones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
We report here the first measurements on chlorophyll (Chl) a fluorescence characteristics of photoautotrophic soybean cells (cell lines SB-P and SBI-P). The cell fluorescence is free from severe distortion problems encountered in higher plant leaves. Chl a fluorescence spectra at 77 K show, after correction for the spectral sensitivity of the photomultiplier and the emission monochromator, peaks at 688, 696 and 745 nm, representing antenna systems of photosystem II-CP43 and CP47, and photosystem I, respectively. Calculations, based on the complementary area over the Chl a fluorescence induction curve, indicated a ratio of 6 of the mobile plastoquinone (including QB) to the primary stable electron acceptor, the bound plastoquinone QA. A ratio of one between the secondary stable electron acceptor, bound plastoquinone QB, and its reduced form QB - was obtained by using a double flash technique. Owing to this ratio, the flash number dependence of the Chl a fluorescence showed a distinct period of four, implying a close relationship to the S state of the oxygen evolution mechanism. Analysis of the QA - reoxidation kinetics showed (1) the halftime of each of the major decay components ( 300 s fast and 30 ms slow) increases with the increase of diuron and atrazine concentrations; and (2) the amplitudes of the fast and the slow components change in a complementary fashion, the fast component disappearing at high concentrations of the inhibitors. This implies that the inhibitors used are able to totally displace QB. In intact soybean cells, the relative amplitude of the 30 ms to 300 s component is higher (40:60) than that in spinach chloroplasts (30:70), implying a larger contribution of the centers with unbound QB. SB-P and SBI-P soybean cells display a slightly different sensitivity of QA - decay to inhibitors.Abbreviations CA complementary area over fluorescence induction curve - Chl chlorophyll, diuron - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F m maximum chlorophyll a fluorescence - F 0 minimum chlorophyll a fluorescence - F v = F t-F0 - where F v = variable chlorophyll a fluorescence - and Ft = chlorophyll a fluorescence at time t - PS II photosystem II - Q a primary (plastoquinone) electron acceptor of PS II - Q b secondary (plastoquinone) electron acceptor of PS II - t50 the time at which the concentration of reduced Q a is 50% of that at its maximum value  相似文献   

16.
Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 °C, 40 s). Under these circumstances, the K peak (∼ F400 μs) appears in the chl a fluorescence (OJIP) transient reflecting partial QA reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating QA accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this QA accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t1/2 ∼ 30 ms. This alternative electron donor is most probably ascorbate.  相似文献   

17.
Kulsam Ali  Peter Heathcote  Saul Purton 《BBA》2006,1757(12):1623-1633
A conserved tryptophan residue located between the A1B and FX redox centres on the PsaB side of the Photosystem I reaction centre has been mutated to a glycine in Chlamydomonas reinhardtii, thereby matching the conserved residue found in the equivalent position on the PsaA side. This mutant (PsaB:W669G) was studied using EPR spectroscopy with a view to understanding the molecular basis of the reported kinetic differences in forward electron transfer from the A1A and the A1B phyllo(semi)quinones. The kinetics of A1 reoxidation due to forward electron transfer or charge recombination were measured by electron spin echo spectroscopy at 265 K and 100 K, respectively. At 265 K, the reoxidation kinetics are considerably lengthened in the mutant in comparison to the wild-type. Under conditions in which FX is initially oxidised the kinetics of charge recombination at 100 K are found to be biphasic in the mutant while they are substantially monophasic in the wild-type. Pre-reduction of FX leads to biphasic kinetics in the wild-type, but does not alter the already biphasic kinetic properties of the PsaB:W669G mutant. Reduction of the [4Fe-4S] clusters FA and FB by illumination at 15 K is suppressed in the mutant. The results provide further support for the bi-directional model of electron transfer in Photosystem I of C. reinhardtii, and indicate that the replacement of the tryptophan residue with glycine mainly affects the redox properties of the PsaB bound phylloquinone A1B.  相似文献   

18.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

19.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   

20.
High-temperature-induced inhibition of the acceptor side of Photosystem II (PS II) was studied in tobacco thylakoids using oxygen evolution, chlorophyll a (Chl a) fluorescence and redox potential measurements. When thylakoids were heated at 2 °C/min from 25 to 50 °C, the oxygen evolving complex became inhibited between 32 and 45 °C, whereas the acceptor side of PS II tolerated higher temperatures. Variable Chl a fluorescence decreased more slowly than oxygen evolution, suggesting that transitions between some S-states occurred even after heat-induced inhibition of the oxygen evolving activity. 77 K emission spectroscopy reveals that heating does not cause detachment of the light-harvesting complex II from PS II, and thus the heat-induced increase in the initial F0 fluorescence is due to loss of exciton trapping in the heated PS II centers. Redox titrations showed a heat-induced increase in the midpoint potential of the QA/QA -) couple from the control value of –80 mV to +40 mV at 50 °C, indicating a loss of the reducing power of QA -). When its driving force thus decreased, electron transfer from QA -) to QB in the PS II centers that still could reduce QA became gradually inhibited, as shown by measurements of the decay of Chl a fluorescence yield after a single turnover flash. Interestingly, the heat-induced loss of variable fluorescence and inhibition of electron transfer from QA -) to QB could be partially prevented by the presence of 5 mM bicarbonate during heating, suggesting that high temperatures cause release of the bicarbonate bound to PS II. We speculate that both the upshift in the redox potential of the QA/QA -) couple and the release of bicarbonate may be caused by a heat-induced structural change in the transmembrane D1 or D2 proteins. This structural change may, in turn, be caused by the inhibition of the oxygen evolving complex during heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号