共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic imprinting corresponds to the differential expression of a gene according to its paternal or maternal origin. The kinship theory of genomic imprinting proposes that maternally or paternally inherited genes may be in conflict over their effects on kin differently related along the paternal or maternal line. Most examples supporting the kinship theory of imprinting deal with competition between offspring for maternal resources. However, genomic imprinting may also explain differential behavioral expression toward kin whenever sibs are more related to each other via one parental sex than the other. Unfortunately, nothing is currently known about imprinting associated with a behavioral phenotype in insects. Here we report the first evidence of such a maternally imprinted behavior. We show that the solitary parasitoid larvae of Aleochara bilineata Gyll (Coleoptera; Staphylinidae), which avoid superparasitizing their full sibs, also avoid their cousins when they are related to them through their father, but not when they are related to them through their mother. A genetic kin recognition mechanism is proposed to explain this result and we conclude that genomic imprinting could control the avoidance of kin superparasitism in this species and have a profound influence on decision-making processes. 相似文献
2.
Inactivation of expression of the paternal allele at two maternally silent imprinted loci has recently been reported to diminish the quality of care that female mice lavish on their offspring. This suggests that there can be disagreement between the maternally and paternally derived genomes of mothers over how much care for offspring is appropriate, with the paternally derived genome favoring greater care. The reason for such disagreement is not obvious because the maternally and paternally derived alleles at a locus have equal probabilities of being transmitted to each of the mother's ova and, therefore, would appear to have equal interests in a mother's offspring. However, if a female mates with a related male, her two alleles may have different probabilities of being present in the sperm that fertilize her ova. Natural selection can favor silencing of the maternally derived allele at a locus that enhances the quality of maternal care if the average patrilineal relatedness between a female and her mates decreases more rapidly than the average matrilineal relatedness. Just such an asymmetrical decrease in relatedness over time would be expected in a structured population in which patrilineal inbreeding is more common than matrilineal inbreeding. 相似文献
3.
Pfeifer K 《American journal of human genetics》2000,67(4):777-787
4.
D Haig 《Proceedings. Biological sciences / The Royal Society》1997,264(1388):1657-1662
The theory of inclusive fitness can be modified to consider separate coefficients of relatedness for an individual''s maternal and paternal alleles. A gene is said to have parentally antagonistic effects if it has an inclusive fitness benefit when maternally derived, but an inclusive fitness cost when paternally derived (or vice versa). Parental antagonism favours the evolution of alleles that are expressed only when maternally derived or only when paternally derived (genomic imprinting). 相似文献
5.
Jamie R. Weaver Marisa S. Bartolomei 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2014,1839(3):169-177
Genomic imprinting is an epigenetic phenomenon in which genes are expressed monoallelically in a parent-of-origin-specific manner. Each chromosome is imprinted with its parental identity. Here we will discuss the nature of this imprinting mark. DNA methylation has a well-established central role in imprinting, and the details of DNA methylation dynamics and the mechanisms that target it to imprinted loci are areas of active investigation. However, there is increasing evidence that DNA methylation is not solely responsible for imprinted expression. At the same time, there is growing appreciation for the contributions of post-translational histone modifications to the regulation of imprinting. The integration of our understanding of these two mechanisms is an important goal for the future of the imprinting field. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development. 相似文献
6.
Wilkins JF 《Journal of theoretical biology》2006,242(3):643-651
Genomic imprinting (parent-of-origin-dependent gene regulation) is associated with intra-genomic evolutionary conflict over the optimal pattern of gene expression. Most theoretical models of imprinting focus on the conflict between the maternally and paternally derived alleles at an imprinted locus. Recently, however, more attention has been focused on multi-directional conflicts involving not only the imprinted gene itself, but also the genes that encode the regulatory machinery responsible for establishing and maintaining imprinted gene expression. In this paper, I examine the conflict involved in epigenetic reprogramming of imprinted genes in early mammalian embryonic development. In the earliest phase of development, maternal-store proteins are responsible for most regulatory activity in the embryo. These proteins are under selection to maximize the mother's inclusive fitness, which is not identical to that of either of the sets of genes present in the embryo. Both the maternally and paternally derived genomes in the embryo favor maintenance of the epigenetic modifications established in the female and male germlines, respectively. Maternal-store proteins favor maintenance of some of these modifications, but erasure of others. Here I consider the logical structure of the machinery responsible for these two activities. Methylation maintenance is most effectively performed by AND-linked architectures, which may explain the unusual trafficking behavior of the oocyte-specific DNA methyltransferase, Dnmt1o. By contrast, demethylation is better supported by OR-linked architectures, which may explain the difficulty in identifying the factor(s) responsible for the active demethylation of the paternal genome following fertilization. 相似文献
7.
Mothers can determine which genotypes of offspring they will produce through selective abortion or selective implantation. This process can, at some loci, favour matching between maternal and offspring genotype whereas at other loci mismatching may be favoured (e.g. MHC, HLA). Genomic imprinting generally renders gene expression monoallelic and could thus be adaptive at loci where matching or mismatching is beneficial. This hypothesis, however, remains unexplored despite evidence that loci known to play a role in genetic compatibility may be imprinted. We develop a simple model demonstrating that, when matching is beneficial, imprinting with maternal expression is adaptive because the incompatible paternal allele is not detected, protecting offspring from selective abortion. Conversely, when mismatching is beneficial, imprinting with paternal expression is adaptive because the maternal genotype is more able to identify the presence of a foreign allele in offspring. Thus, imprinting may act as a genomic ‘cloaking device’ during critical periods in development when selective abortion is possible. 相似文献
8.
9.
We present nine diallelic models of genetic conflict in which one allele is imprintable and the other is not to examine how genomic imprinting may have evolved. Imprinting is presumed to be either maternal (i.e., the maternally derived gene is inactivated) or paternal. Females are assumed to be either completely monogamous or always bigamous, so that we may see any effect of multiple paternity. In contrast to previous verbal and quantitative genetic models, we find that genetic conflicts need not lead to paternal imprinting of growth inhibitors and maternal imprinting of growth enhancers. Indeed, in some of our models--those with strict monogamy--the dynamics of maternal and paternal imprinting are identical. Multiple paternity is not necessary for the evolution of imprinting, and in our models of maternal imprinting, multiple paternity has no effect at all. Nevertheless, multiple paternity favors the evolution of paternal imprinting of growth inhibitors and hinders that of growth enhancers. Hence, any degree of multiple paternity means that growth inhibitors are more likely to be paternally imprinted, and growth enhancers maternally so. In all of our models, stable polymorphism of imprinting status is possible and mean fitness can decrease over time. Neither of these behaviors have been predicted by previous models. 相似文献
10.
E. B. Keverne 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1609)
Mammalian brain development commences during foeto-placental development and is strongly influenced by the epigenetic regulation of imprinted genes. The foetal placenta exerts considerable influence over the functioning of the adult maternal hypothalamus, and this occurs at the same time as the foetus itself is developing a hypothalamus. Thus, the action and interaction of two genomes in one individual, the mother, has provided a template for co-adaptive functions across generations that are important for maternal care and resource transfer, while co-adaptively shaping the mothering capabilities of each subsequent generation. The neocortex is complex, enabling behavioural diversity and cultural learning such that human individuals are behaviourally unique. Retrotransposons may, in part, be epigenetic mediators of such brain diversity. Interestingly some imprinted genes are themselves retrotransposon-derived, and retrotransposon silencing by DNA methylation is thought to have contributed to the evolutionary origins of imprint control regions. The neocortex has evolved to be adaptable and sustain both short-term and long-term synaptic connections that underpin learning and memory. The adapted changes are not themselves inherited, but the predisposing mechanisms for such epigenetic changes are heritable. This provides each generation with the same ability to make new adaptations while constrained by a transgenerational knowledge-based predisposition to preserve others. 相似文献
11.
D Haig 《Heredity》2014,113(2):96-103
Common misconceptions of the ‘parental conflict'' theory of genomic imprinting are addressed. Contrary to widespread belief, the theory defines conditions for cooperation as well as conflict in mother–offspring relations. Moreover, conflict between genes of maternal and paternal origin is not the same as conflict between mothers and fathers. In theory, imprinting can evolve either because genes of maternal and paternal origin have divergent interests or because offspring benefit from a phenotypic match, or mismatch, to one or other parent. The latter class of models usually require maintenance of polymorphism at imprinted loci for the maintenance of imprinted expression. The conflict hypothesis does not require maintenance of polymorphism and is therefore a more plausible explanation of evolutionarily conserved imprinting. 相似文献
12.
Epigenetic regulation of mammalian genomic imprinting 总被引:31,自引:0,他引:31
Imprinted genes play important roles in development, and most are clustered in large domains. Their allelic repression is regulated by 'imprinting control regions' (ICRs), which are methylated on one of the two parental alleles. Non-histone proteins and nearby sequence elements influence the establishment of this differential methylation during gametogenesis. DNA methylation, histone modifications, and also polycomb group proteins are important for the somatic maintenance of imprinting. The way ICRs regulate imprinting differs between domains. At some, the ICR constitutes an insulator that prevents promoter-enhancer interactions, when unmethylated. At other domains, non-coding RNAs could be involved, possibly by attracting chromatin-modifying complexes. The latter silencing mechanism has similarities with X-chromosome inactivation. 相似文献
13.
The evolution of X-linked genomic imprinting 总被引:1,自引:0,他引:1
We develop a quantitative genetic model to investigate the evolution of X-imprinting. The model compares two forces that select for X-imprinting: genomic conflict caused by polygamy and sex-specific selection. Genomic conflict can only explain small reductions in maternal X gene expression and cannot explain silencing of the maternal X. In contrast, sex-specific selection can cause extreme differences in gene expression, in either direction (lowered maternal or paternal gene expression), even to the point of gene silencing of either the maternal or paternal copy. These conclusions assume that the Y chromosome lacks genetic activity. The presence of an active Y homologue makes imprinting resemble the autosomal pattern, with active paternal alleles (X- and Y-linked) and silenced maternal alleles. This outcome is likely to be restricted as Y-linked alleles are subject to the accumulation of deleterious mutations. Experimental evidence concerning X-imprinting in mouse and human is interpreted in the light of these predictions and is shown to be far more easily explained by sex-specific selection. 相似文献
14.
Genomic imprinting is a phenomenon by which the expression of an allele at a locus depends on the parent of origin. Two different two-locus evolutionary models are presented in which a second locus modifies the imprinting status of the primary locus, which is under differential selection in males and females. In the first model, a modifier allele that imprints the primary locus invades the population when the average dominance coefficient among females and males is >12 and selection is weak. The condition for invasion is always heavily contingent upon the extent of dominance. Imprinting is more likely in the sex experiencing weaker selection only under some parameter regimes, whereas imprinting by either sex is equally likely under other regimes. The second model shows that a modifier allele that induces imprinting will increase when imprinting has a direct selective advantage. The results are not qualitatively dependent on whether the modifier locus is autosomal or X linked. 相似文献
15.
16.
17.
Huddling: brown fat, genomic imprinting and the warm inner glow 总被引:1,自引:0,他引:1
Haig D 《Current biology : CB》2008,18(4):R172-R174
Heat generated by huddling animals is a public good with a private cost and thus vulnerable to exploitation, as illustrated by recent work on rabbits and penguins. Effects of imprinted genes on brown adipose tissue suggest that non-shivering thermogenesis is an arena for intragenomic conflict. 相似文献
18.
Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci. 相似文献
19.
Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction—the case of underdominance—imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent''s genome. We illustrate these models and explore key links and differences using a unified framework. 相似文献
20.
D. Haig 《Journal of evolutionary biology》1996,9(3):357-380
Placental hormones are produced by one genetic individual (the fetus) to act on the receptors of another genetic individual (the mother). Mothers are probably able to extract some information from placental hormones, but this information may be limited to a crude measure of fetal vigor. Placental hormones are most easily interpreted as fetal attempts to manipulate maternal metabolism for fetal benefit. An evolutionary model is presented for a hypothetical hormone that increases the nutrient content of maternal blood. The model predicts that, at an evolutionary equilibrium, the hormone will be produced solely by the mother or solely by the placenta, but not by both. If the gene for the hormone is subject to genomic imprinting, the paternally-derived allele will be active and the maternally-derived allele will be silent. Hormone production benefits the members of the mother's current litter at some cost to future litters. Therefore, paternity changes between litters increase the level of hormone production. On the other hand, offspring that produce less of the hormone than litter-mates share the benefits but have lower costs. Therefore, multiple paternity within litters reduces the level of hormone production. 相似文献