首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-nitrosylation in plants. Subsequent biochemical and in silico structural studies revealed certain mechanisms through which S-nitrosylation impacts their functions. Furthermore, first insights into the physiological relevance of S-nitrosylation, particularly in controlling plant immune responses, have been recently reported. Collectively, these discoveries greatly extend our knowledge of NO functions and of the molecular processes inherent to signal transduction in plants.  相似文献   

2.
Nitric oxide (NO) is an important signaling molecule that regulates many physiological processes in plants. One of the most important regulatory mechanisms of NO is S-nitrosylation—the covalent attachment of NO to cysteine residues. Although the involvement of cysteine S-nitrosylation in the regulation of protein functions is well established, its substrate specificity remains unknown. Identification of candidates for S-nitrosylation and their target cysteine residues is fundamental for studying the molecular mechanisms and regulatory roles of S-nitrosylation in plants. Several experimental methods that are based on the biotin switch have been developed to identify target proteins for S-nitrosylation. However, these methods have their limits. Thus, computational methods are attracting considerable attention for the identification of modification sites in proteins. Using GPS-SNO version 1.0, a recently developed S-nitrosylation site-prediction program, a set of 16,610 candidate proteins for S-nitrosylation containing 31,900 S-nitrosylation sites was isolated from the entire Arabidopsis proteome using the medium threshold. In the compartments “chloroplast,” “CUL4-RING ubiquitin ligase complex,” and “membrane” more than 70% of the proteins were identified as candidates for S-nitrosylation. The high number of identified candidates in the proteome reflects the importance of redox signaling in these compartments. An analysis of the functional distribution of the predicted candidates showed that proteins involved in signaling processes exhibited the highest prediction rate. In a set of 46 proteins, where 53 putative S-nitrosylation sites were already experimentally determined, the GPS-SNO program predicted 60 S-nitrosylation sites, but only 11 overlap with the results of the experimental approach. In general, a computer-assisted method for the prediction of targets for S-nitrosylation is a very good tool; however, further development, such as including the three dimensional structure of proteins in such analyses, would improve the identification of S-nitrosylation sites.  相似文献   

3.
Chung KK 《Neuro-Signals》2006,15(6):307-313
Nitric oxide (NO) is an important signaling molecule that controls a wide range of biological processes. One of the signaling mechanisms of NO is through the S-nitrosylation of cysteine residues on proteins. S-nitrosylation is now regarded as an important redox signaling mechanism in the regulation of different cellular and physiological functions. However, deregulation of S-nitrosylation has also been linked to various human diseases such as neurodegenerative disorders. Nitrosative stress has long been considered as a major mediator in the development of neurodegeneration, but the molecular mechanism of how NO can contribute to neurodegeneration is not completely clear. Early studies suggested that nitration of proteins, which can induce protein aggregation might contribute to the neurodegenerative process. However, several recent studies suggest that S-nitrosylation of proteins that are important for neuronal survival contributes substantially in the development of various neurodegenerative disorders. Thus, in-depth understanding of the mechanism of neurodegeneration in relation to S-nitrosylation will be critical for the development of therapeutic treatment against these neurodegenerative diseases.  相似文献   

4.
Nitric oxide (NO) is an omnipresent regulator of cell function in a variety of physiologic and pathophysiologic states. In part, NO exerts its actions by S-nitrosylation of target thiols, primarily in cysteine residues. Delineating the functional correlates of S-nitrosylation can begin with identification of the entire population of S-nitrososylated proteins. Recently, the biotin switch technique was developed to allow a proteomic approach to identification of the "universe" of S-nitrsoylated proteins. In this study using endotoxin-stimulated RAW264.7 murine macrophages, we have utilized the biotin-switch technique and protein sequencing to identify S-nitrosylated proteins in this setting. In contrast to other studies utilizing exogenous sources of NO, our approach utilizes endogenous NO synthesis as the basis for S-nitrosylation. Our results indicate multiple unique proteins not previously identified as S-nitrosylation targets: enolase, pyruvate kinase, elongation factor-1 and -2, plastin-2, FRAG-6, CEM-16, and SMC-6. While the ubiquitous nature of NO argues for some degrees of commonality, S-nitrosylation of unique proteins specific to endotoxin stimulated macrophages suggests regulatory mechanisms for which NO is necessary, but not sufficient.  相似文献   

5.
蛋白的亚硝基化是近期发现的一种类似于磷酸化、可逆的、不依赖于环磷酸鸟苷(cGMP)的一氧化氮修饰和调节蛋白功能的新途径。一经发现,有关亚硝基化的研究呈指数级递增。亚硝基化参与从生长发育到抗病、抗逆等多个生理和病理过程。已有大量综述对亚硝基化调控蛋白功能从而影响某一生理生化及病理过程进行了总结。但迄今为止,对检测蛋白亚硝基化的手段和鉴定亚硝基化位点的方法进行总结的文献综述仍屈指可数。据此,我们对蛋白亚硝基化检测手段的发明、改进提高、亚硝基化位点的结构特点以及亚硝基化位点预测软件的开发等进行综述,旨在为该领域内科研工作者提供方便。  相似文献   

6.
Sun J 《生理学报》2007,59(5):544-552
一氧化氮(nitricoxide,NO)作为一种重要的信使分子参与缺血预适应(ischemic preconditioning,IPC)心肌保护。目前普遍认为NO通过经典的NO/cGMP依赖的信号转导途径调节线粒体ATP敏感性钾(ATP-sensitive potassium,KATP通道来发挥其保护作用,然而越来越多的数据表明NO还可能通过蛋白质巯基亚硝基化(S-nitrosylation)来发挥生理功能。蛋白质巯基亚硝基化,即蛋白质半胱氨酸巯基与NO基团形成共价键,是一种氧化还原依赖的蛋白质翻译后可逆修饰。蛋白质巯基亚硝基化不仅可以改变蛋白质的结构和功能,而且还可以阻抑目标半胱氨酸的进一步氧化修饰。IPC增加S-亚硝基硫醇(S-nitrosothi01)含量,引起蛋白质巯基亚硝基化。S-亚硝基硫醇还能发挥药理性预适应作用,抵抗心肌缺血,再灌注损伤。因此,蛋白质巯基亚硝基化是IPC心肌保护的一种重要途径,参与抵抗细胞内氧化应激和亚硝化应激(nitrosative stress)。  相似文献   

7.
Nitric oxide (NO˙) is a short-lived, endogenously produced gas that is highly diffusible across cell membranes and acts as a signaling molecule in the body. The redox state and chemistry of NO˙ facilitate its interaction with various proteins thus regulating various intracellular and intercellular events. One of the key mechanisms by which NO˙ regulates the function of various target proteins is through the coupling of a nitroso moiety from NO-derived metabolites to a reactive cysteine leading to the formation of a S-nitrosothiol (SNO), a process commonly known as S-nitrosylation. S-nitrosylation signaling events within the cell have led to the discovery of many other physiological functions of NO˙ in many other types of cells including cancer cells. Only recently are the diverse roles of S-nitrosylation in cancer beginning to be understood. In the present review we discuss the recent evidence for the diverse roles of NO˙/SNO-related mechanisms in cancer biology and therapy, including the participation of NO˙ in the pathogenesis of cancer, its duality in protecting against or inducing cancer cell death and the contribution of NO˙ to metastatic processes. In addition, NO˙ can be therapeutically used in the reversal of tumor cell resistance to cytotoxic drugs and as a sensitizing agent to chemo- and radiotherapy. Finally, recent studies providing evidence for NO-related mechanisms of epigenetic gene expression regulation will also be discussed. Undoubtedly, new exciting results will contribute to this rapidly expanding area of cancer research.  相似文献   

8.
Nitric oxide (NO) is a gaseous signaling molecule in the biological system. It mediates its function through the direct modification of various cellular targets, such as through S-nitrosylation. The process of S-nitrosylation involves the attachment of NO to the cysteine residues of proteins. Interestingly, an increasing number of cellular pathways are found to be regulated by S-nitrosylation, and it has been proposed that this redox signaling pathway is comparable to phosphorylation in cells. However, imbalance of NO metabolism has also been linked to a number of human diseases. For instance, NO is known to contribute to neurodegeneration by causing protein nitration, lipid peroxidation and DNA damage. Moreover, recent studies show that NO can also contribute to the process of neurodegeneration through the impairment of pro-survival proteins by S-nitroyslation. Thus, further understanding of how NO, through S-nitrosylation, can compromise neuronal survival will provide potential therapeutic targets for neurodegenerative diseases.  相似文献   

9.
NO regulates a variety of physiological processes, including cell proliferation, differentiation, and inflammation. S-nitrosylation, a NO-mediated reversible protein modification, leads to changes in the activity and function of proteins. In particular, the role of S-nitrosylation during adipogenesis is largely unknown. We hypothesized that the normal physiological levels of NO, but not the excess levels generated under severe conditions, such as inflammation, may be critically involved in the proper regulation of adipogenesis. We found that endogenous S-nitrosylation of proteins was required for adipocyte differentiation. By performing a biotin-switch assay, we identified FAS, a key lipogenic enzyme in adipocytes, as a target of S-nitrosylation during adipogenesis. Interestingly, we also observed that the dimerization of FAS increased in parallel with the amount of S-nitrosylated FAS during adipogenesis. In addition, we found that exogenous NO enhanced the dimerization and the enzymatic activity of FAS. Moreover, site-directed mutagenesis of three predicted S-nitrosylation sites indicated that S-nitrosylation of FAS at Cys1471 and Cys2091, but not at Cys1127, increased its enzymatic activity. Taken together, these results suggest that the S-nitrosylation of FAS at normal physiological levels of NO increases its activity through dimerization and may contribute to the proper regulation of adipogenesis.  相似文献   

10.
Nitric oxide (NO) has a fundamental role in the plant hypersensitive disease resistance response (HR), and S-nitrosylation is emerging as an important mechanism for the transduction of its bioactivity. A key step toward elucidating the mechanisms by which NO functions during the HR is the identification of the proteins that are subjected to this PTM. By using a proteomic approach involving 2-DE and MS we characterized, for the first time, changes in S-nitrosylated proteins in Arabidopsis thaliana undergoing HR. The 16 S-nitrosylated proteins identified are mostly enzymes serving intermediary metabolism, signaling and antioxidant defense. The study of the effects of S-nitrosylation on the activity of the identified proteins and its role during the execution of the disease resistance response will help to understand S-nitrosylation function and significance in plants.  相似文献   

11.
12.
13.
Nitric oxide (NO) has been linked to numerous physiological and pathophysiological events that are not readily explained by the well established effects of NO on soluble guanylyl cyclase. Exogenous NO S-nitrosylates cysteine residues in proteins, but whether this is an important function of endogenous NO is unclear. Here, using a new proteomic approach, we identify a population of proteins that are endogenously S-nitrosylated, and demonstrate the loss of this modification in mice harbouring a genomic deletion of neuronal NO synthase (nNOS). Targets of NO include metabolic, structural and signalling proteins that may be effectors for neuronally generated NO. These findings establish protein S-nitrosylation as a physiological signalling mechanism for nNOS.  相似文献   

14.
Eu JP  Sun J  Xu L  Stamler JS  Meissner G 《Cell》2000,102(4):499-509
Ion channels have been studied extensively in ambient O2 tension (pO2), whereas tissue PO2 is much lower. The skeletal muscle calcium release channel/ryanodine receptor (RyR1) is one prominent example. Here we report that PO2 dynamically controls the redox state of 6-8 out of 50 thiols in each RyR1 subunit and thereby tunes the response to NO. At physiological pO2, nanomolar NO activates the channel by S-nitrosylating a single cysteine residue. Among sarcoplasmic reticulum proteins, S-nitrosylation is specific to RyR1 and its effect on the channel is calmodulin dependent. Neither activation nor S-nitrosylation of the channel occurs at ambient PO2. The demonstration that channel cysteine residues subserve coupled O2 sensor and NO regulatory functions and that these operate through the prototypic allosteric effector calmodulin may have general implications for the regulation of redox-related systems.  相似文献   

15.
S-nitrosylation, the formation of S-nitrosothiol (SNO), is an important reversible thiol oxidation event that has been increasingly recognized for its role in cell signaling. Although many proteins susceptible to S-nitrosylation have been reported, site-specific identification of physiologically relevant SNO modifications remains an analytical challenge because of the low abundance and labile nature of this modification. Herein we present further improvement and optimization of the recently reported resin-assisted cysteinyl peptide enrichment protocol for SNO identification and its application to mouse skeletal muscle to identify specific cysteine sites sensitive to S-nitrosylation by a quantitative reactivity profiling strategy. Our results indicate that the protein- and peptide-level enrichment protocols provide comparable specificity and coverage of SNO-peptide identifications. S-nitrosylation reactivity profiling was performed by quantitatively comparing the site-specific SNO modification levels in samples treated with S-nitrosoglutathione, an NO donor, at two different concentrations (i.e., 10 and 100 μM). The reactivity profiling experiments led to the identification of 488 SNO-modified sites from 197 proteins with specificity of ∼95% at the unique peptide level, i.e., ∼95% of enriched peptides contain cysteine residues as the originally SNO-modified sites. Among these sites, 281 from 145 proteins were considered more sensitive to S-nitrosylation based on the ratios of observed SNO levels between the two treatments. These SNO-sensitive sites are more likely to be physiologically relevant. Many of the SNO-sensitive proteins are localized in mitochondria, contractile fiber, and actin cytoskeleton, suggesting the susceptibility of these subcellular compartments to redox regulation. Moreover, these observed SNO-sensitive proteins are primarily involved in metabolic pathways, including the tricarboxylic acid cycle, glycolysis/gluconeogenesis, glutathione metabolism, and fatty acid metabolism, suggesting the importance of redox regulation in muscle metabolism and insulin action.  相似文献   

16.
The biological effects of nitric oxide (NO) are in significant part mediated through S-nitrosylation of cysteine thiol. Work on model thiol substrates has raised the idea that molecular oxygen (O(2)) is required for S-nitrosylation by NO; however, the relevance of this mechanism at the low physiological pO(2) of tissues is unclear. Here we have used a proteomic approach to study S-nitrosylation reactions in situ. We identify endogenously S-nitrosylated proteins in subcellular organelles, including dihydrolipoamide dehydrogenase and catalase, and show that these, as well as hydroxymethylglutaryl-CoA synthase and sarcosine dehydrogenase (SarDH), are S-nitrosylated by NO under strictly anaerobic conditions. S-Nitrosylation of SarDH by NO is best rationalized by a novel mechanism involving the covalently bound flavin of the enzyme. We also identify a set of mitochondrial proteins that can be S-nitrosylated through multiple reaction channels, including anaerobic/oxidative, NO/O(2), and GSNO-mediated transnitrosation. Finally, we demonstrate that steady state levels of S-nitrosylation are higher in mitochondrial extracts than the intact organelles, suggesting the importance of denitrosylation reactions. Collectively, our results provide new insight into the determinants of S-nitrosothiol levels in subcellular compartments.  相似文献   

17.
Nitric oxide(NO) is an important signaling molecule regulating diverse biological processes in all living organisms. A major physiological function of NO is executed via protein S-nitrosylation, a redox-based the past decade, significant progress has been made in functional characterization of S-nitrosylated proteins Inviteposttranslational modification by covalently adding a NO molecule to a reactive cysteine thiol of a target protein.S-nitrosylation is an evolutionarily conserved mechanism modulating multiple aspects of cellular signaling. Duringin plants. Emerging evidence indicates that protein Snitrosylation is ubiquitously involved in the regulation of plant development and stress responses. Here we review current understanding on the regulatory mechanisms of protein S-nitrosylation in various biological processes in plants and highlight key challenges in this field.  相似文献   

18.
S-nitrosylation is an important means of regulating the activity of proteins. We have developed a method which allows unbiased identification of thiol modified proteins within a complex mixture following NO generation, by taking advantage of the fact that prior nitrosylation will block subsequent modification of cysteine residues with 1-biotinamido-4-[4'-(maleimidomethyl)-cyclohexane-carboxamid o] butane (biotin-BMCC). Thiol modified proteins are reduced in intensity when revealed by blotting and overlay with avidin-horseradish peroxidase. In the case of a purified synaptic vesicle fraction we observe a high degree of enrichment of specific biotinylated proteins relative to homogenate. We find that thiol modification of proteins in the presence of NO donors is widespread, occurring in the majority of proteins that will react with biotin-BMCC. In a further development of this technique we have depleted the biotinylated proteins from solubilised synaptic vesicles using avidin-agarose and analysed the supernatants with a panel of antibodies. This has allowed us to identify SNARE proteins (soluble NSF attachment protein receptors) as potential targets for S-nitrosylation.  相似文献   

19.
In recent years, nitric oxide (NO) has been recognized as a signalling molecule of plants, being involved in diverse processes like germination, root growth, stomatal closing, and responses to various stresses. A mechanism of how NO can regulate physiological processes is the modulation of cysteine residues of proteins (S-nitrosylation) by S-nitrosoglutathione (GSNO), a physiological NO donor. The concentration of GSNO and the level of S-nitrosylated proteins are regulated by GSNO reductase, which seems to play a major role in NO signalling. To investigate the importance of NO in plant defense response, we performed a proteomic analysis of Arabidopsis wildtype and GSNO-reductase knock-out plants infected with both the avirulent and virulent pathogen strains of Pseudomonas syringae. Using 2-D DIGE technology in combination with MS, we identified proteins, which are differentially accumulated during the infection process. We observed that both lines were more resistant to avirulent infections than to virulent infections mainly due to the accumulation of stress-, redox-, and defense-related proteins. Interestingly, after virulent infections, we also observed accumulation of defense-related proteins, but no or low accumulation of stress- and redox-related proteins, respectively. In summary, we present here the first detailed proteomic analysis of plant defense response.  相似文献   

20.
Proteomic identification of S-nitrosylated proteins in Arabidopsis   总被引:11,自引:0,他引:11       下载免费PDF全文
Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were purified and analyzed using nano liquid chromatography in combination with mass spectrometry. We identified 63 proteins from cell cultures and 52 proteins from leaves that represent candidates for S-nitrosylation, including stress-related, redox-related, signaling/regulating, cytoskeleton, and metabolic proteins. Strikingly, many of these proteins have been identified previously as targets of S-nitrosylation in animals. At the enzymatic level, a case study demonstrated NO-dependent reversible inhibition of plant glyceraldehyde-3-phosphate dehydrogenase, suggesting that this enzyme could be affected by S-nitrosylation. The results of this work are the starting point for further investigation to get insight into signaling pathways and other cellular processes regulated by protein S-nitrosylation in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号