首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using the system for genetic transformation and transgenic plant regeneration via somatic embryogenesis (SE) of Lycium barbarum established in this laboratory, this study reports the optimization of the factors affecting the efficiency of transformation, including pre-culture period, leaf explant source, use of acetosyringone, strains and density of Agrobacterium, and temperature of co-cultivation. The optimized transformation protocol for L. barbarum included preculture of leaf explants from 3-wk-old seedlings for 3 d on the medium for callus induction followed by inoculation with Agrobacterium strain EHA101 (pIG121 Hm), co-cultivation for 3d at 24°C, and transfer to the selection regeneration medium with 50 mg l−1 kanamycin (Kan). Using this protocol, 65% L. barbarum explants gave rise to Kan-resistant and GUS-positive calli. In addition, the expression of introduced transgene (npt II) in clonal progeny was verified by formation of calli and somatic embryos from leaf segments of nine transgenic plants grown on the Kan-containing medium. All explants formed calli at 50 mg l−1 Kan and seven out of nine transgenic plants were found to possess callus-forming capacity even at 100 mg l−1 Kan. These calli also possessed higher SE potential on SE medium supplemented with 25 mg l−1 Kan.  相似文献   

2.
The full-length cDNA sequence (2613 bp) of the trehalose-6-phosphate synthase (TPS) gene of eelgrass Zostera marina (ZmTPS) was identified and cloned. Z. marina is a kind of seed-plant growing in sea water during its whole life history. The open reading frame (ORF) region of ZmTPS gene encodes a protein of 870 amino acid residues and a stop codon. The corresponding genomic DNA sequence is 3770 bp in length, which contains 3 exons and 2 introns. The ZmTPS gene was transformed into rice variety ZH11 via Agrobacterium-mediated transformation method. After antibiotic screening, molecular characterization, salt-tolerance and trehalose content determinations, two transgenic lines resistant to 150 mM NaCL solutions were screened. Our study results indicated that the ZmTPS gene was integrated into the genomic DNA of the two transgenic rice lines and could be expressed well. Moreover, the detection of the transformed ZmTPS gene in the progenies of the two transgenic lines was performed from T1 to T4 generations; and results suggested that the transformed ZmTPS gene can be transmitted from parent to the progeny in transgenic rice.  相似文献   

3.
Microspores can be induced to develop homozygous doubled haploid plants in a single generation. In the present experiments androgenic microspores of wheat have been genetically transformed and developed into mature homozygous transgenic plants. Two different transformation techniques were investigated, one employing electroporation and the other co-cultivation with Agrobacterium tumefaciens. Different tissue culture and transfection conditions were tested on nine different wheat cultivars using four different constructs. A total of 19 fertile transformants in five genotypes from four market classes of common wheat were recovered by the two procedures. PCR followed by DNA sequencing of the products, Southern blot analyses and bio/histo-chemical and histological assays of the recombinant enzymes confirmed the presence of the transgenes in the T0 transformants and their stable inheritance in homozygous T1∶2 doubled haploid progenies. Several decisive factors determining the transformation and regeneration efficiency with the two procedures were determined: (i) pretreatment of immature spikes with CuSO4 solution (500 mg/L) at 4°C for 10 days; (ii) electroporation of plasmid DNA in enlarged microspores by a single pulse of ∼375 V; (iii) induction of microspores after transfection at 28°C in NPB-99 medium and regeneration at 26°C in MMS5 medium; (iv) co-cultivation with Agrobacterium AGL-1 cells for transfer of plasmid T-DNA into microspores at day 0 for <24 hours; and (v) elimination of AGL-1 cells after co-cultivation with timentin (200–400 mg/L).  相似文献   

4.
Agrobacterium-mediated transformation in chickpea was developed using strain LBA4404 carrying nptII, uidA and cryIAc genes and transformants selected on Murashige and Skoog’s basal medium supplemented with benzyladenine, kinetin and kanamycin. Integration of transgenes was demonstrated using polymerase chain reaction and Southern blot hybridization of T0 plants. The expression of CryIAc delta endotoxin and GUS enzyme was shown by enzyme linked immunosorbent assay and histochemical assay respectively. The transgenic plants (T0) showed more tolerance to infection by Helicoverpa armigera compared to control plants. Various factors such as explant source, cultivar type, different preculture treatment period of explants, co-cultivation period, acetosyringone supplementation, Agrobacterium harboring different plasmids, vacuum infiltration and sonication treatment were tested to study the influence on transformation frequency. The results indicated that use of epicotyl as explant, cultivar ICCC37, Agrobacterium harboring plasmid pHS102 as vector, preculture of explant for 48 h, co-cultivation period of 2 days at 25°C and vacuum infiltration for 15 min produced the best transformation results. Sonication treatment of explants with Agrobacteria for 80 s was found to increase the frequency of transformation.  相似文献   

5.
An efficient system for Agrobacterium-mediated transformation of Lilium × formolongi was established by preventing the drastic drop of pH in the co-cultivation medium with MES. Meristematic nodular calli were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm which harbored intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransfease II (NPTII) genes. After three days of co-cultivation on 2 g/l gellan gum-solidified MS medium containing 100 μM acetosyringone, 30 g/l sucrose, 1 mg/l picloram and different concentrations of MES, they were cultured on the same medium containing 12.5 mg/l meropenem to eliminate Agrobacterium for 2 weeks and then transferred onto medium containing the same concentration of meropenem and 25 mg/l hygromycin for selecting putative transgenic calli. Transient GUS expression was only observed by adding MES to co-cultivation medium. Hygromycin-resistant transgenic calli were obtained only when MES was added to the co-cultivation medium especially at 10 mM. The hygromycin-resistant calli were successfully regenerated into plantlets after transferring onto picloram-free medium. Transformation of plants was confirmed by histochemical GUS assay, PCR analysis and Southern blot analysis.  相似文献   

6.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for soybean [Glycine max (L.) Merrill] based on the examinations of several factors affecting plant transformation efficiency. Increased transformation efficiencies were obtained when the soybean cotyledonary node were inoculated with the Agrobacterium inoculum added with 0.02% (v/v) surfactant (Silwet L-77). The applications of Silwet L-77 (0.02%) during infection and l-cysteine (600 mg l−1) during co-cultivation resulted in more significantly improved transformation efficiency than each of the two factors alone. The optimized temperature for infected explant co-cultivation was 22°C. Regenerated transgenic shoots were selected and produced more efficiently with the modified selection scheme (initiation on shoot induction medium without hygromycin for 7 days, with 3 mg l−1 hygromycin for 10 days, 5 mg l−1 hygromycin for another 10 days, and elongation on shoot elongation medium with 8 mg l−1 hygromycin). Using the optimized system, we obtained 145 morphologically normal and fertile independent transgenic plants in five important Chinese soybean varieties. The transformation efficacies ranged from 3.8 to 11.7%. Stable integration, expression and inheritance of the transgenes were confirmed by molecular and genetic analysis. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This optimized transformation system should be employed for efficient Agrobacterium-mediated soybean gene transformation.  相似文献   

7.
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.  相似文献   

8.
Yang J  Bi HP  Fan WJ  Zhang M  Wang HX  Zhang P 《Plant science》2011,181(6):701-711
Efficient Agrobacterium tumefaciens-mediated transformation was developed using embryogenic suspension cell cultures of elite sweet potato (Ipomoea batatas [L.] Lam.) cultivars, including Ayamurasaki, Sushu2, Sushu9, Sushu11, Wanshu1, Xushu18 and Xushu22. Embryogenic suspension cultures were established in LCP medium using embryogenic calli induced from apical or axillary buds on an induction medium containing 2 mg l−1 2,4-D. Suspension cultures were co-cultivated with A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301 with the hpt gene as a selectable marker and an intron-interrupted uidA gene as a visible marker. Several key steps of the sweet potato transformation system have been investigated and optimized, including the appropriate antibiotics and their concentrations for suppressing Agrobacterium growth and the optimal doses of hygromycin for transformant selection. A total of 485 putative transgenic plant lines were produced from the transformed calli via somatic embryogenesis and germination to plants under 10 mg l−1 hygromycin and 200 mg l−1 cefotaxime. PCR, GUS and Southern blot analyses of the regenerated plants showed that 92.35% of them were transgenic. The number of T-DNA insertions varied from one to three in most transgenic plant lines. Plants showed 100% survival when 308 transgenics were transferred to soil in the greenhouse and then to the field. Most of them were morphologically normal, with the production of storage roots after 3 months of cultivation in the greenhouse or fields. The development of such a robust transformation method suitable to a range of sweet potato genotypes not only provides a routine tool for genetic improvement via transgenesis but also allows us to conduct a functional verification of endogenous genes in sweet potato.  相似文献   

9.
Transgenic plants have become attractive as bioreactors to produce heterologous proteins that can be developed as edible vaccines. In the present study, transgenic rice expressing the envelope protein (E) of Japanese encephalitis virus (JEV), under the control of a dual cauliflower mosaic virus (CaMV 35S) promoter, was generated by Agrobacterium-mediated transformation. Southern blot, Northern blot, Western blot and ELISA analyses confirmed that the E gene was integrated into transgenic rice and was expressed in the leaves at levels of 1.1-1.9 μg/mg of total soluble protein. After intraperitoneal immunization of mice with crude protein extracts from transgenic rice plants, JEV-specific neutralizing antibody could be detected. Moreover, E-specific mucosal immune responses could be detected in mice after oral immunization with protein extracts from transgenic rice plants. These results show the potential of using a transgenic rice-based expression system as an alternative bioreactor for JEV subunit vaccine.  相似文献   

10.
A high throughput genetic transformation system in maize has been developed with Agrobacterium tumefaciens mediated T-DNA delivery. With optimized conditions, stable callus transformation frequencies for Hi-II immature embryos averaged approximately 40%, with results in some experiments as high as 50%. The optimized conditions include N6 medium system for Agrobacterium inoculation, co-cultivation, resting and selection steps; no AgNo3 in the infection medium and adding AgNo3 in co-cultivation, resting and selection medium; Agrobacterium concentration at 0.5×109 c.f.u. ml–1 for bacterium inoculation; 100 mg l–1 carbenicillin used in the medium to eliminate Agrobacterium after inoculation; and 3 days for co-cultivation and 4 days for resting. A combination of all of these conditions resulted in establishing a high throughput transformation system. Over 500 T0 plants were regenerated and these plants were assayed by transgene expression and some of them were also analyzed by Southern hybridization. T1 plants were analyzed and transmission of transgenes to the T1 generation was verified. This represents a highly reproducible and reliable system for genetic transformation of maize Hi-II.  相似文献   

11.
12.
We compared rice transgenic plants obtained by Agrobacterium-mediated and particle bombardment transformation by carrying out molecular analyses of the T0, T1 and T2 transgenic plants. Oryza sativa japonica rice (c.v. Taipei 309) was transformed with a construct (pWNHG) that carried genes coding for neomycin phosphotransferase (nptII), hygromycin phosphotransferase (Hygr), and -glucuronidase (GUS). Thirteen and fourteen transgenic lines produced via either method were selected and subjected to molecular analysis. Based on our data, we could draw the following conclusions. Average gene copy numbers of the three transgenes were 1.8 and 2.7 for transgenic plants obtained by Agrobacterium and by particle bombardment, respectively. The percentage of transgenic plants containing intact copies of foreign genes, especially non-selection genes, was higher for Agrobacterium-mediated transformation. GUS gene expression level in transgenic plants obtained from Agrobacterium-mediated transformation was more stable overall the transgenic plant lines obtained by particle bombardment. Most of the transgenic plants obtained from the two transformation systems gave a Mendelian segregation pattern of foreign genes in T1 and T2 generations. Co-segregation was observed for lines obtained from particle bombardment, however, that was not always the case for T1 lines obtained from Agrobacterium-mediated transformation. Fertility of transgenic plants obtained from Agrobacterium-mediated transformation was better. In summary, the Agrobacterium-mediated transformation is a good system to obtain transgenic plants with lower copy number, intact foreign gene and stable gene expression, while particle bombardment is a high efficiency system to produce large number of transgenic plants with a wide range of gene expression.  相似文献   

13.
To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD600 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T0 transgenic plants were generated, representing 3.6% transformation frequency. T0 transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T1 progeny. PCR, RT-PCR, and Southern hybridization analysis of T0 and T1 transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T0 and T1 transgenic chickpea plants was achieved maximum up to 116 ng mg−1 of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.  相似文献   

14.
Development of transgenics in pigeon pea remains dogged by poor plant regeneration in vitro from transformed tissues and low frequency transformation protocols. This article presents a non-tissue culture-based method of generating transgenic pigeon pea (Cajanus cajan (L.) Millisp.) plants using Agrobacterium-Ti plasmid-mediated transformation system. The protocol involves raising of whole plant transformants (T0 plants) directly from Agrobacterium-infected young seedlings. The plumular and intercotyledonary meristems of the seedling axes are targeted for transformation. The transformation conditions optimized were, pricking of the apical and intercotyledonary region of the seedling axes of two-day old germinating seedlings with a sewing needle, infection with Agrobacterium (LBA4404/pKIWI105 carrying uid A and npt II genes) in Winans’ AB medium that was added with wounded tobacco leaf extract, co-cultivation in the same medium for 1h and transfer of seedlings to soilrite for further growth and hardening and subsequent transfer of seedlings to soil in pots in the greenhouse. Out of the 22–25 primary transformants that survived infection-hardening treatments from each of the three experiments, 15 plants on the average established on the soil under greenhouse conditions, showed slow growth initially, nevertheless grew as normal plants, and flowered and set seed eventually. Of the several seeds harvested from all the T0 plants, six hundred were sown to obtain progeny (T1) plants and 350 of these were randomly analysed to determine their transgenic nature. PCR was performed for both gus (uid A) and npt II genes. Forty eight of the 350 T1 plants amplified both transgenes. Southern blot analysis substantiated the integration and transmission of these genes. The protocol ensured generation of pigeon pea transgenic plants with considerable ease in a short time and is applicable across different genotypes/cultivars of the crop and offers immense potential as a supplemental or an alternative protocol for generating transgenic plants of difficult-to-regenerate pigeon pea. Further, the protocol offers the option of doing away with a selection step in the procedure and so facilitates transformation, which is free of marker genes.Key words: Cajanus cajan, Transformation, Tissue culture-independent plant regeneration  相似文献   

15.
Rice being the staple food of middle and south India, there is an extensive research undertaken in protecting the species and improving the quality and yield. Several recombinations have been made to the rice genome to impart various qualities which lack in the pure breed. Oryza faces various natural stress, like temperature variance, high salinity, etc., drought is one of the major parameters affecting the growth and yield of the plant. Transgenic rice cultivars can be generated for drought tolerance using the Agrobacterium mediated transformations. The current work aims to impart the gene for drought tolerance in Oryza sativa L. using Agrobacterium mediated transformation. The gene targeted in this context is dehydration response element binding factors (DREB). DREB plays a major role in response to drought mediated stress. Sambha mahsuri (Indica type) and Cotton dora sannalu (Indica type) the two local cultivars have been transformed for the gene AtDREB1A under 35s CaMV promoters (pBIH binary vector) for which the vector used was Agrobacterium. The target plant tissue being used was calli. Optimization of the parameters was performed for a lethal dose of hygromycin, cefotaxime level, and acetosyringone level. PCR amplification was used for the confirmation of the transgenic (T0) species in which 23% and 18% for Sambha mahsuri and Cotton dora sannalu, respectively. Southern blotting was performed for the genomic DNA. Normal growth was shown by the T1 transgenic plants whose expression was confirmed by RT-PCR. The T1 transgenic plants showed good tolerance to drought mediated stress for a total period of one and a half week under greenhouse condition. The study can be concluded by producing a potentially successful drought resistance T1 species produced using Agrobacterium mediated transformation.  相似文献   

16.
We have generated putative promoter tagged transgenic lines inArachis hypogaea cv JL-24 using cotyledonary node (CN) as an explant and a promoterless gus::nptII bifunctional fusion gene mediated byAgrobacterium transformation. MS medium fortified with 6-benzylaminopurine (BAP) at 4 mg/l in combination with 0.1 mg/l α-napthaleneacetic acid (NAA) was the most effective out of the various BAP and NAA combinations tested in multiple shoot bud formation. Parameters enhancing genetic transformation viz. seedling age,Agrobacterium genetic background and co-cultivation periods were studied by using the binary vector p35SGUSINT. Genetic transformation with CN explants from 6-day-old seedlings co-cultivated withAgrobacterium GV2260 strain for 3 days resulted in high kanamycin resistant shoot induction percentage (45%); approximately 31% transformation frequency was achieved with p35S GUSINT in Β-glucuronidase (GUS) assays. Among thein vivo GUS fusions studied with promoterless gus::nptII construct, GUS-positive sectors occupied 38% of the total transient GUS percentage. We have generated over 141 putative T0 plants by using the promoterless construct and transferred them to the field. Among these, 82 plants survived well in the green house and 5 plants corresponding to 3.54% showed stable integration of the fusion gene as evidenced by GUS, polymerase chain reaction (PCR) and Southern blot analyses. Twenty-four plants were positive for GUS showing either tissue-specific expression or blue spots in at least one plant part. The progeny of 15 T0 plants indicated Mendelian inheritance pattern of segregation for single-copy integration. The tissue-specific GUS expression patterns were more or less similar in both T0 and corresponding T1 progeny plants. We present the differential patterns of GUS expression identified in the putative promoter-tagged transgenic lines in the present communication.  相似文献   

17.
《Plant science》2001,161(2):239-247
Agrobacterium-mediated transformation of Vigna radiata L. Wilczek has been achieved. Hypocotyl and primary leaves excised from 2-day-old in-vitro grown seedlings produced transgenic calli on B5 basal medium supplemented with 5×10−6 M BAP, 2.5×10−6 M each of 2,4-D and NAA and 50 mg l−1 kanamycin after co-cultivation with Agrobacterium tumefaciens strains, LBA4404 (pTOK233), EHA105 (pBin9GusInt) and C58C1 (pIG121Hm) all containing β-glucuronidase (gusA) and neomycin phosphotransferase II (nptII) marker genes. Transformed calli were found resistant to kanamycin up to 1000 mg.l−1. Gene expression of kanamycin resistance (nptII) and gusA in transformed calli was demonstrated by nptII assay and GUS histochemical analysis, respectively. Stable integration of T-DNA into the genome of transformed calli of mungbean was confirmed by Southern blot analysis. Transgenic calli could not regenerate shoots on B5 or B5 containing different cytokinins or auxins alone or in combination. However, for the first time, transformed green shoots showing strong GUS activity were regenerated directly from cotyledonary node explants cultured after co-cultivation with LBA4404 (pTOK233) on B5 medium containing 6-benzylaminopurine (5×10−7 M) and 75 mg l−1 kanamycin. The putative transformed shoots were rooted on B5+indole-3-butyric acid (5×10−6 M) within 10–14 days and resulted plantlets subsequently developed flowers and pods with viable seeds in vitro after 20 days of root induction. The stamens, pollen grains and T0 seeds showed GUS activity. Molecular analysis of putative transformed plants revealed the integration and expression of transgenes in T0 plants and their seeds.  相似文献   

18.
Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture.  相似文献   

19.
A Rice chitinase-3 under enhance version of CaMV 35S was introduced into peanut (Arachis hypogaea L.) through Agrobacterium mediation. Agrobacterium tumefaciens strain LB4404 was used harboring the binary vector (pB1333-EN4-RCG3) containing the chitinase (chit) and hygromycin resistance (hpt) gene as selectable marker. Putative transgenic shoots were regenerated and grown on MS medium supplemented with 5 mg/l BAP, 1 mg/l kinetin, and 30 mg/l hygromycin. Elongated shoots were examined for the presence of the integrated rice chitinase gene along with hygromycin gene as selectable. The integration pattern of transgene in the nuclear genome of the putative transformed plants (T0) was confirmed through Southern hybridization analysis of the genomic DNA. Survival rate of the in vitro regenerated plantlets was over 60% while healthy putatively transgenic (T0) plants with over 42% transformation frequency were produced through Agrobacterium mediated gene transfer of the rice chitinase gene and all the plants flowered and set seed normally. T1 plants were tested for resistance against Cercospora arachidicola by infection with the microspores. Transgenic strains exhibited a higher resistance than the control (non-transgenic plants). chitinase gene expression in highly resistant transgenic strains was compared to that of a susceptible control. A good correlation was observed between chitinase activity and fungal pathogen resistance.  相似文献   

20.
In this study, leaf midribs, the elite explants, were used for the first time to develop an efficient regeneration and transformation protocol for ramie [Boehmeria nivea (L.) Gaud.] via Agrobacterium-mediated genetic transformation. Sensitivity of leaf midribs regeneration to kanamycin was evaluated, which showed that 40 mg l?1 was the optimal concentration needed to create the necessary selection pressure. Factors affecting the ramie transformation efficiency were evaluated, including leaf age, Agrobacterium concentration, length of infection time for the Agrobacterium solution, acetosyringone concentration in the co-cultivation medium, and the co-cultivation period. The midrib explants from 40-day-old in vitro shoots, an Agrobacterium concentration at OD600 of 0.6, 10-min immersion in the bacteria solution, an acetosyringone concentration of 50 mg l?1 in the co-cultivation medium and a 3-day co-cultivation period produced the highest efficiencies of regeneration and transformation. In this study, the average transformation rate was 23.25 %. Polymerase chain reactions using GUS and NPTII gene-specific primers, Southern blot and histochemical GUS staining analyses further confirmed that the transgene was integrated into the ramie genome and expressed in the transgenic ramie. The establishment of this system of Agrobacterium-mediated genetic transformation and regeneration of transgenic plants will be used not only to introduce genes of interest into the ramie genome for the purpose of trait improvement, but also as a common means of testing gene function by enhancing or inhibiting the expression of target genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号