首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Coronatine is a toxin produced by the pathogen Pseudomonas syringae. This compound has received much attention recently for its potential to act as a plant growth regulator and elicitor of plant secondary metabolism. To gain more insight into the mechanism by which elicitors can affect the biosynthesis of paclitaxel (Px) and related taxanes, the effect of coronatine (Cor) and methyl jasmonate (MeJA) on Taxus media cell cultures has been studied. For this study, a two-stage cell culture was established, in which cells were first cultured for 14 days in a medium optimised for growth, after which the cells were transferred to medium optimised for secondary metabolite production. The two elicitors were added to the medium at the beginning of the second stage. Total taxane production in the cell suspension was significantly enhanced by both elicitors, increasing from a maximum level of 8.14 mg/L in control conditions to 21.48 mg/L (day 12) with MeJA and 77.46 mg/L (day 16) with Cor. Expression analysis indicated that the txs, t13oh, t2oh, t7oh, dbat, pam, bata and dbtnbt genes were variably induced by the presence of the elicitors. Genes encoding enzymes involved in the formation of the polihydroxylated hypothetical intermediate (TXS, T13OH, T2OH, T7OH) and the phenylalanoil CoA chain (PAM) were stronger induced than those encoding enzymes catalysing the last steps of the Px biosynthetic pathway (DBAT, BAPT and DBTNBT). Notably, although taxane accumulation differed qualitatively and quantitatively following MeJA- or Cor-elicitation, gene expression induction patterns were similar, inferring that both elicitors may involve distinct but yet uncharacterised regulatory mechanisms.  相似文献   

2.
Taxus chinensis var. mairei (Lemée et Lévl) Cheng et L.K. Fu is an evergreen tall tree ubiquitous to the southeastern region in China. The first chemical study on this species was published in 1987. Since then about 163 compounds including taxoids and non-taxane compounds were isolated from seeds, root, bark and leaves of this species. This review summarized the chemical investigation on T. chinensis var. mairei (Lemée et Lévl) Cheng et L.K. Fu in the past 20 years. T. chinensis var. mairei (Lemée et Lévl) Cheng et L.K. Fu was assigned as a variation of T. chinensis (Pilger) Rehd. in Flora of China. However, present chemotaxonomic data would suggest that these two plants might belong to two different chemotypes; further genetic investigation and comprehensive chemical studies on them are warranted to address this issue.  相似文献   

3.
4.
During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.  相似文献   

5.
Escherichia coli and the cellular slime mold Dictyostelium discoideum form stable viscous symbiotic colonies in the laboratory. To examine changes in E. coli gene expression during establishment of this symbiotic relationship, cells of symbiotic co-cultures and monocultures at various time points were subjected to microarrays analysis. Genes changed significantly over time compared to the initial gene expression level were determined as characteristics of GO function categories. The categories that appeared significantly at the same sampling time points between the two cultures were also identified. Up-regulation of genes from several GO categories associated with polysaccharide synthesis, cell wall degradation, and iron acquisition as well as down-regulation of genes from GO categories associated with biosynthesis through starvation response were observed in co-cultures, indicating exchange of molecules between the two organisms. Up-regulation of genes from several GO categories associated with anaerobic respiration and flagella biosynthesis were also observed, indicating that the environment inside symbiotic colonies was similar to that in developed biofilms. Up-regulation of genes associated with energy-generating systems indicated that E. coli prolonged survival within the symbiotic colony. Thus, E. coli showed not only molecule exchange but also altered expression of various genes in symbiosis with D. discoideum.  相似文献   

6.
Trichinella spiralis causes a significantly higher parasite burden in rat muscle than Trichinella nativa. To assess whether the difference in infectivity is due to the early intestinal response, we analyzed gene expression changes in the rat jejunum during Trichinella infection with a whole-genome microarray. The rats were euthanized on day five of infection, and their jejunal mucosa was sampled for microarray analysis. In addition, intestinal histology and hematology were examined. Against our expectations, the gene expression changes were similar in both T.nativa- and T. spiralis-infected groups. The two groups were hence pooled, and in the combined Trichinella-infected group, 551 genes were overexpressed and 427 underexpressed when compared to controls (false discovery rate ?0.001 and fold change at least 2 in either direction). Pathway analysis identified seven pathways significantly associated with Trichinella infection (p < 0.05). The microarray data suggested nonspecific damage and an inflammatory response in the jejunal mucosa. Histological findings, including hyperemia, hemorrhage and a marked infiltration of inflammatory cells, supported the microarray data. Trichinella infection caused complex gene expression changes that indicate a host response to tissue damage in the mucosa of the jejunum, but the changes were not notably dependent on the studied species of Trichinella.  相似文献   

7.
8.
9.
10.
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.  相似文献   

11.
We have demonstrated that programmed cell death (PCD) in Entamoeba histolytica is induced in vitro by G418 aminoglycoside antibiotic. To ascertain if biochemical and morphological changes previously observed are paired to molecular changes that reflect a genetic program, we looked here for early differential gene expression during the induction of PCD.Using cDNA-amplified fragment length polymorphisms (AFLPs) and in silico derived analysis we showed in E. histolytica a differential gene expression during PCD induced by G418. The genes identified encoded for proteins homologous to Glutaminyl-tRNA synthase, Ribosomal Subunit Proteins 40S and 18S, Saposin-like, Silent Information Regulator-2 (Sir-2), and Grainins 1 and 2. Using real-time quantitative PCR (RT Q-PCR), we found that glutaminyl-tRNA synthetase, sir-2, grainins and saposin-like genes were strongly overexpressed after 30 min of PCD induction, while its expression dramatically decreased up to 60 min. On the other hand, overexpression of ribosomal genes increased only 7-fold of basal expression, showing a progressive down-regulation up to 90 min. glutaminyl-tRNA synthetase, sir-2 and grainins could act as negative regulators of PCD, trying to control the biochemical changes related to PCD activation. Overexpression of saposin-like gene could act as up-regulator of some cell death pathways. Our results give evidence of the first genes identified during the early stage of PCD in E. histolytica that could be implicated in regulation of apoptotic pathways.  相似文献   

12.
During embryogenesis, the Dkk1 mediated Wnt inhibition controls the spatiotemporal dynamics of cell fate determination, cell differentiation and cell death. Furthermore, the Dkk1 dose is critical for the normal Wnt homeostasis, as alteration of the Dkk1 activity is associated with various diseases. We investigated the regulation of Dkk1 expression during embryonic development. We identified nine conserved non-coding elements (CNEs), located 3′ to the Dkk1 locus. Analyses of the regulatory potential revealed that four of these CNEs in combination drive reporter expression very similar to Dkk1 expression in several organs of transgenic embryos. We extended the knowledge of Dkk1 expression during hypophysis, external genitalia and kidney development, suggesting so far to unexplored functions of Dkk1 during the development of these organs. Characterization of the regulatory potential of four individual CNEs revealed that each of these promotes Dkk1 expression in brain and kidney. In combination, two enhancers are responsible for expression in the pituitary and the genital tubercle. Furthermore, individual CNEs mediates craniofacial, optic cup and limb specific Dkk1 regulation. Our study substantially improves the knowledge of Dkk1 regulation during embryonic development and thus might be of high relevance for therapeutic approaches.  相似文献   

13.
14.
It has been extensively documented that exposure of amphibians and teleost fish to exogenous steroid hormones like estrogen, androgen, xenoestrogen or steroid biosynthesis inhibitors can impair their gonadal development or induce sex reversal against genotypic sex. However, the molecular pathways underlying sexual development and the effects of sex steroids or other exogenous hormones in these aquatic vertebrates remain elusive. Recently, a germ plasm-associated piRNA (piwi-interacting RNA) pathway has been shown to be a determinant in the development of animal gonadal germline cells. In the current study, we examined whether this piRNA pathway is involved in the regulation of sex steroid hormones in gonadal development. We firstly established developmental expression patterns of three key piRNA pathway genes (mael, piwi and vasa), during Silurana (Xenopus) tropicalis embryogenesis and early larval development. All three genes exhibit high expression at early developmental stages and have significantly decreased expression thereafter, indicating a very active involvement of piRNA pathway at the beginning of embryogenesis. We further examined gene expression changes of those genes in frog larvae exposed to two sex steroid biosynthesis inhibitors, fadrozole and finasteride, both of which are known to result in male-biased or female-biased phenotypes, respectively. We found that fadrozole and finasteride exposures increased the expression of piRNA pathway genes such as mael and vasa at the larval stage when the expression of piRNA pathway genes is programmed to be very low. Therefore, our results indicate that the piRNA pathway is likely a common pathway by which different sex steroid hormones regulate gonadal sex differentiation.  相似文献   

15.
16.
Although attempts have been made to use mass cultures of marine copepods as live foods in marine aquaculture, some limitations such as low density culture still exist. The brackish water cyclopoid copepod, Paracyclopina nana has the potential for mass culturing as live food. In this study, we not only investigated the effect of culture density on the naupliar production and specific gene expressions of P. nana, but also the effect of several antioxidants under the conditions of a high density culture. The naupliar production of the copepod decreased with increasing culture density. The expression of glutathione reductase (GR), selenium-dependent glutathione peroxidase (SeGPx), glutathione S-transferase kappa (GST kappa), heat shock protein 40 (Hsp40), and Hsp70 genes of P. nana increased in the high density treatment but vitellogenin genes (Vg1 and Vg2) showed downregulation. In the condition with 20 inds./mL, vitamin C had a significant decrease but sodium selenite induced the naupliar production of P. nana greatly. The expressions of GR, SeGPx, Hsp70, and Vg genes increased with the vitamin C treatment. Sodium selenite caused a decrease of SeGPx and Hsp40 but GST kappa increased in the treatment with 20 inds./mL. These results suggest that sodium selenite is a positive antioxidant which can increase the culture efficiency of the copepod.  相似文献   

17.
Gene targeting induced by homologous integration of a foreign DNA segment into a chromosomal target sequence enables precise disruption or replacement of genes of interest and provides an effective means to analyze gene function, and also becomes an useful technique for breeding. But, integration of introduced DNA fragments is predominantly non-homologous in most species. However, we presented high-efficient homologous integration in disruptants of non-homologous end joining (NHEJ), that is, the Ku70-, Ku80- or Lig4-homologs deficient strain, in a model fungus Neurospora crassa. When the effect of NHEJ-defective plants for gene targeting was therefore examined in a model plant Arabidopsis (Arabidopsis thaliana), the efficiencies of gene targeting in the Atlig4/Atlig4 plant were 2/7 (28.6%) against calli obtained a selection-marker gene, 2/16 (12.5%) against selected calli, and about 2/540 (0.004%) against total cell particles at the starting point for transformation. The results of this paper show that the NHEJ-deficient system might cause a decrease in the efficiency of transformation but gives true targeted transformants with high efficiency in plant cell.  相似文献   

18.
19.
Gynoecium development is a complex process which is regulated by key factors that control the spatial formation of the apical, medial and basal parts. SHATTERPROOF1 (SHP1) and SHP2, two closely related MADS-box genes, redundantly control the differentiation of the dehiscence zone and promote the lignification of adjacent cells. Furthermore, SHP1 and SHP2 have shown to play an important role in ovule identity determination. The present work identifies a new function for these two genes in promoting stigma, style and medial tissue development. This new role was discovered by combining the shp1 shp2 double mutant with the aintegumenta (ant) and crabs claw (crc) mutants. In quadruple mutant flowers, the inner whorl is composed of unfused carpels which lack almost completely apical and medial tissues, a phenotype similar to the previously reported fil ant and lug ant double mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号