首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme activator protein (HAP), also known as nuclear factor Y or CCAAT binding factor (HAP/NF‐Y/CBF), has important functions in regulating plant growth, development and stress responses. The expression of rice HAP gene (OsHAP2E) was induced by probenazole (PBZ), a chemical inducer of disease resistance. To characterize the gene, the chimeric gene (OsHAP2E::GUS) engineered to carry the structural gene encoding β‐glucuronidase (GUS) driven by the promoter from OsHAP2E was introduced into rice. The transgenic lines of OsHAP2Ein::GUS with the intron showed high GUS activity in the wounds and surrounding tissues. When treated by salicylic acid (SA), isonicotinic acid (INA), abscisic acid (ABA) and hydrogen peroxide (H2O2), the lines showed GUS activity exclusively in vascular tissues and mesophyll cells. This activity was enhanced after inoculation with Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae. The OsHAP2E expression level was also induced after inoculation of rice with M. oryzae and X. oryzae pv. oryzae and after treatment with SA, INA, ABA and H2O2, respectively. We further produced transgenic rice overexpressing OsHAP2E. These lines conferred resistance to M. oryzae or X. oryzae pv. oryzae and to salinity and drought. Furthermore, they showed a higher photosynthetic rate and an increased number of tillers. Microarray analysis showed up‐regulation of defence‐related genes. These results suggest that this gene could contribute to conferring biotic and abiotic resistances and increasing photosynthesis and tiller numbers.  相似文献   

2.
OsHAP3 genes regulate chloroplast biogenesis in rice   总被引:5,自引:0,他引:5  
We have isolated three genes that potentially encode a HAP3/nuclear factor-YB (NF-YB)/CCAAT binding factor-A (CBF-A) subunit of a CCAAT-box binding complex in rice (Oryza sativa), and named them OsHAP3A, OsHAP3B and OsHAP3C. These genes were expressed in various organs including leaves. In the transgenic rice plants with antisense or RNAi construct of OsHAP3A, reduced expression of not only OsHAP3A but also OsHAP3B and OsHAP3C was observed. These plants had pale green leaves, in which the amount of chlorophyll was reduced and chloroplasts were degenerated. Lamella was not well developed and accumulation of starch was not detected. The degenerated chloroplast formation was accompanied by reduced expression of nuclear-encoded photosynthesis genes such as RBCS and CAB, while expression of chloroplast-encoded genes was not affected or rather increased. These results suggest that one or more OsHAP3 genes regulate the expression of nuclear-encoded chloroplast-targeted genes and normal development of chloroplasts.  相似文献   

3.
The transition from the vegetative phase to the reproductive phase is a major developmental process in flowering plants.The underlying mechanism controlling this cellular process remains a research focus in the field of plant molecular biology.In the present work,we identified a gene encoding the C3H2C3-type RING finger protein Nt RCP1 from tobacco BY-2 cells.Enzymatic analysis demonstrated that Nt RCP1 is a functional E3 ubiquitin ligase.In tobacco plants,expression level of Nt RCP1 was higher in the reproductive shoot apices than in the vegetative ones.Nt RCP1-overexpressing plants underwent a more rapid transition from the vegetative to the reproductive phase and flowered markedly earlier than the wild-type control.Histological analysis revealed that the shoot apical meristem of Nt RCP1-overexpressing plants initiated inflorescence primordia precociously compared to the wild-type plant due to accelerated cell division.Overexpression of Nt RCP1 in BY-2 suspension cells promoted cell division,which was a consequence of the shortened G2 phase in the cell cycle.Together,our data suggest that Nt RCP1 may act as a regulator of the phase transition,possibly through its role in cell cycle regulation,during vegetative/reproductive development in tobacco plant.  相似文献   

4.
Drought is one of the critical factors limiting reproductive yields of rice and other crops globally. However, little is known about the molecular mechanism underlying reproductive development under drought stress in rice. To explore the potential gene function for improving rice reproductive development under drought, a drought induced gene, Oryza sativa Drought-Induced LTP (OsDIL) encoding a lipid transfer protein, was identified from our microarray data and selected for further study. OsDIL was primarily expressed in the anther and mainly responsive to abiotic stresses, including drought, cold, NaCl, and stress-related plant hormone abscisic acid (ABA). Compared with wild type, the OsDIL-overexpressing transgenic rice plants were more tolerant to drought stress during vegetative development and showed less severe tapetal defects and fewer defective anther sacs when treated with drought at the reproductive stage. The expression levels of the drought-responsive genes RD22, SODA1, bZIP46 and POD, as well as the ABA synthetic gene ZEP1 were up-regulated in the OsDIL-overexpression lines but the ABA degradation gene ABAOX3 was down-regulated. Moreover, overexpression of OsDIL lessened the down-regulation by drought of anther developmental genes (OsC4, CYP704B2 and OsCP1), providing a mechanism supporting pollen fertility under drought. Overexpression of OsDIL significantly enhanced drought resistance in transgenic rice during reproductive development, while showing no phenotypic changes or yield penalty under normal conditions. Therefore, OsDIL is an excellent candidate gene for genetic improvement of crop yield in adaption to unfavorable environments.  相似文献   

5.
6.
7.
8.
Glycine betaine (GB) is an important osmoprotectant, which improves plant tolerance to various abiotic stresses. In higher plants, GB is synthesized through two-step oxidations of choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Choline, the precursor of GB, is synthesized by phosphoethanolamine N-methyltransferase (PEAMT). Rice is known as a typical non-GB-accumulated species. However, the underlying mechanism related to GB accumulation remains elusive. Here, we determined whether the endogenous accumulation of choline is sufficient to GB biosynthesis in rice and whether the rice CMO protein has the function of oxidizing choline to generate betaine aldehyde. The results showed that overexpression of the rice PEAMT1 gene (OsPEAMT1) resulted in increased levels of choline, while GB content remained unchanged in the transgenic rice plants overexpressing OsPEAMT1. However, the intracellular GB level and the tolerance to salt stress of the transgenic lines overexpressing OsCMO were significantly enhanced. Immunoblotting analysis demonstrated that abundant functional OsCMO proteins with correct size were detected in OsCMO-overexpressing transgenic rice plants, but rarely accumulated in the wild type. Collectively, these results implicated that the endogenous accumulation level of choline is not the major factor leading to non-GB accumulation in rice. Instead, the defective expression of OsCMO resulted in non-GB accumulation.  相似文献   

9.
10.
11.
12.
13.
14.
Ethylene regulates multiple aspects of plant growth and development in dicotyledonous plants; however, its roles in monocotyledonous plants are poorly known. Here, we characterized a subfamily II ethylene receptor, ETHYLENE RESPONSE2 (ETR2), in rice (Oryza sativa). The ETR2 receptor with a diverged His kinase domain is a Ser/Thr kinase, but not a His kinase, and can phosphorylate its receiver domain. Mutation of the N box of the kinase domain abolished the kinase activity of ETR2. Overexpression of ETR2 in transgenic rice plants reduced ethylene sensitivity and delayed floral transition. Conversely, RNA interference (RNAi) plants exhibited early flowering and the ETR2 T-DNA insertion mutant etr2 showed enhanced ethylene sensitivity and early flowering. The effective panicles and seed-setting rate were reduced in the ETR2-overexpressing plants, while thousand-seed weight was substantially enhanced in both the ETR2-RNAi plants and the etr2 mutant compared with controls. Starch granules accumulated in the internodes of the ETR2-overexpressing plants, but not in the etr2 mutant. The GIGANTEA and TERMINAL FLOWER1/CENTRORADIALIS homolog (RCN1) that cause delayed flowering were upregulated in ETR2-overexpressing plants but downregulated in the etr2 mutant. Conversely, the α-amylase gene RAmy3D was suppressed in ETR2-overexpressing plants but enhanced in the etr2 mutant. Thus, ETR2 may delay flowering and cause starch accumulation in stems by regulating downstream genes.  相似文献   

15.
Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.  相似文献   

16.

Background

The hormone auxin plays an important role not only in the growth and development of rice, but also in its defense responses. We’ve previously shown that the P450 gene CYP71Z2 enhances disease resistance to pathogens through regulation of phytoalexin biosynthesis in rice, though it remains unclear if auxin is involved in this process or not.

Methodology and Principal Findings

The expression of CYP71Z2 was induced by Xanthomonas oryzae pv. oryzae (Xoo) inoculation was analyzed by qRT-PCR, with GUS histochemical staining showing that CYP71Z2 expression was limited to roots, blades and nodes. Overexpression of CYP71Z2 in rice durably and stably increased resistance to Xoo, though no significant difference in disease resistance was detected between CYP71Z2-RNA interference (RNAi) rice and wild-type. Moreover, IAA concentration was determined using the HPLC/electrospray ionization/tandem mass spectrometry system. The accumulation of IAA was significantly reduced in CYP71Z2-overexpressing rice regardless of whether plants were inoculated or not, whereas it was unaffected in CYP71Z2-RNAi rice. Furthermore, the expression of genes related to IAA, expansin and SA/JA signaling pathways was suppressed in CYP71Z2-overexpressing rice with or without inoculation.

Conclusions and Significance

These results suggest that CYP71Z2-mediated resistance to Xoo may be via suppression of IAA signaling in rice. Our studies also provide comprehensive insight into molecular mechanism of resistance to Xoo mediated by IAA in rice. Moreover, an available approach for understanding the P450 gene functions in interaction between rice and pathogens has been provided.  相似文献   

17.
The activity and community structure of methanotrophs in compartmented microcosms were investigated over the growth period of rice plants. In situ methane oxidation was important only during the vegetative growth phase of the plants and later became negligible. The in situ activity was not directly correlated with methanotrophic cell counts, which increased even after the decrease in in situ activity, possibly due to the presence of both vegetative cells and resting stages. By dividing the microcosms into two soil and two root compartments it was possible to locate methanotrophic growth and activity, which was greatest in the rhizoplane of the rice plants. Molecular analysis by denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH) with family-specific probes revealed the presence of both families of methanotrophs in soil and root compartments over the whole season. Changes in community structure were detected only for members of the Methylococcaceae and could be associated only with changes in the genus Methylobacter and not with changes in the dominance of different genera in the family Methylococcaceae. For the family Methylocystaceae stable communities in all compartments for the whole season were observed. FISH analysis revealed evidence of in situ dominance of the Methylocystaceae in all compartments. The numbers of Methylococcaceae cells were relatively high only in the rhizoplane, demonstrating the importance of rice roots for growth and maintenance of methanotrophic diversity in the soil.  相似文献   

18.
Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield.  相似文献   

19.
Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.  相似文献   

20.
The development process of seed in plants is a cycle of cells which occur gradually and regularly. One of the genes involved in controling this stage is the Wee1 gene. Wee1 encode protein kinase which plays an important role in phosphorylation, inactivation of cyclin-dependent kinase 1 (CDK1)-cyclin (CYC) and inhibiting cell division at mitotic phase. The Overexpression of Wee1 leads to delaying entry into mitotic phase, resulting in enlargement of cell size due to suppression of cell division. Accordingly, the cloning and overexpressing of Wee1 in rice plant is important aim of this research in achieving better quantity and quality of future rice. The main objective of this present study is to cloning and generate transgenic rice plants overexpressing of Wee1 gene. Wee1 was isolated from cDNA of indica rice (Oryza sativa), called OsWee1. The full length of OsWee1 was 1239?bp in size and successfully inserted into plant expression vector pRI101ON. Seven-day-old rice seedlings were prepared for transformation of OsWee1 gene using Agrobacterium-mediated transformation method. Four positive transgenic lines were identified through the presence of kanamycin resistance gene (nptII) using genomic PCR analysis. Southern blot analysis result provides evidence that four independent rice transformants contained one to three rearranged transgene copies. Further screening in transgenic rice generation is needed in order to obtain stable expression of OsWee1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号