首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Inhibition of DNA replication in vitro by pefloxacin   总被引:2,自引:0,他引:2  
Pefloxacin (a novel quinolone antibiotic) is demonstrated to be a drug inhibiting DNA replication 10-times more efficiently than oxolinic acid measured either in toluene-treated E. coli or in an in vitro replication system for oriC plasmids [6]. DNA repair synthesis is not inhibited by the drug.  相似文献   

3.
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism in eukaryotes, which is believed to function as a defence against viruses and transposons. Since its discovery, RNAi has been developed into a widely used technique for generating genetic knock-outs and for studying gene function by reverse genetics. Additionally, inhibition of virus replication by means of induced RNAi has now been reported for numerous viruses, including several important human pathogens such as human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, dengue virus, poliovirus and influenza virus A. In this review, we will summarize the current data on RNAi-mediated inhibition of virus replication and discuss the possibilities for the development of RNAi-based antiviral therapeutics.  相似文献   

4.
Inhibition of Rous sarcoma virus replication by antisense RNA.   总被引:13,自引:3,他引:10       下载免费PDF全文
Previous results have indicated that Rous sarcoma virus env gene expression is specifically inhibited by antisense RNA (L.-J. Chang and C. M. Stoltzfus, Mol. Cell. Biol. 5:2341-2348, 1985). In this study, we compare the extents of inhibition by antisense RNA derived from different parts of the Rous sarcoma virus genome, and we show that antisense constructs containing the 3'-end noncoding region inhibit env expression to a similar extent as those containing the 5'-end noncoding region or coding region. Furthermore, we show that antisense RNA inhibits virus replication at other levels in addition to translation.  相似文献   

5.
6.
Vesicular stomatitis virus (VSV) leader RNA and a synthetic oligodeoxynucleotide of the same sequence were found to inhibit the replication of adenovirus DNA in vitro. In contrast, the small RNA transcribed by the VSV defective interfering particle DI-011 did not prevent adenovirus DNA replication. The inhibition produced by leader RNA was at the level of preterminal protein (pTP)-dCMP complex formation, the initiation step of adenovirus DNA replication. Initiation requires the adenovirus pTP-adenovirus DNA polymerase complex (pTP-Adpol), the adenovirus DNA-binding protein, and nuclear factor I. Specific replication in the presence of leader RNA was restored when the concentration of adenovirus-infected or uninfected nuclear extract was increased or by the addition of purified pTP-Adpol or HeLa cell DNA polymerase alpha-primase to inhibited replication reactions. Furthermore, the activities of both purified DNA polymerases could be inhibited by the leader sequence. These results suggest that VSV leader RNA is the viral agent responsible for inhibition of adenovirus and possibly cellular DNA replication during VSV infection.  相似文献   

7.
8.
Synthetic soluble melanins were synthesized by spontaneous oxidation of L-dopamine, norepinephrine or 5-hydroxytryptamine (serotonin) in weak alkaline solution. These three melanins inhibited infection of human CD4+ lymphoblastoid cells (MT-2) by cell-free human immunodeficiency virus type 1 (HIV-1), without cell toxicity, at concentrations of 0.15-10 micrograms/ml. Also, syncytium formation and resulting cytopathic effects when uninfected cells were mixed with chronic HIV-1-infected cells were blocked by these melanins. Antisyncytial activity was greater when infected cells were preincubated with melanin than when uninfected cells were preincubated with melanin, thus suggesting that interaction of melanin with viral proteins is an important aspect of the antiviral mechanism. These results make synthetic soluble melanins interesting candidates for further study as possible anti-HIV-1 therapeutics.  相似文献   

9.
Intermediates of adeno-associated virus DNA replication in vitro.   总被引:7,自引:7,他引:0       下载免费PDF全文
G Hong  P Ward    K I Berns 《Journal of virology》1994,68(3):2011-2015
Intermediates of adeno-associated virus type 2 (AAV) DNA replication in an in vitro assay have been characterized. The assay involves rescue and replication of an AAV insert in pBR322. Intermediates were shown to be duplex molecules in which at least one terminus was in the extended configuration, in contrast to the hairpinned ends seen after rescue in the absence of AAV DNA replication. Also present were linear double-stranded dimers, which were characterized as either head-to-head or tail-to-tail tandems; no head-to-tail dimers were detected. The results are in accord with the current model of AAV DNA replication.  相似文献   

10.
Purified defective interfering (DI) particles of vesicular stomatitis virus (VSV) inhibit the replication of a heterologous virus, pseudorabies virus (PSR), in hamster (BHK-21) and rabbit (RC-60) cell lines. In contrast to infectious B particles of VSV, UV irradiation of DI particles does not reduce their ability to inhibit PSR replication. However, UV irradiation progressively reduces the ability of DI particles to cause homologous interference with B particle replication. Pretreatment with interferon does not affect the ability of DI particles to inhibit PSR replication in a rabbit cell line (RC-60) in which RNA, but not DNA, viruses are sensitive to the action of interferon. Under similar conditions of interferon pretreatment, the inhibition of PSR by B particles is blocked. These data suggest that de novo VSV RNA or protein synthesis is not required for the inhibition of PSR replication by DI particles. DI particles that inhibit PSR replication also inhibit host RNA and protein synthesis in BHK-21 and RC-60 cells. Based on the results described and data in the literature, it is proposed that the same component of VSV B and DI particles is responsible for most, if not all, of the inhibitory activities of VSV, except homologous interference.  相似文献   

11.
P Crisell  S Thompson    W James 《Nucleic acids research》1993,21(22):5251-5255
Self-cleaving RNAs (ribozymes) can be engineered to cleave target RNAs of choice in a sequence-specific manner (1). Consequently, they could be used to inhibit virus replication or to analyse host gene function in vivo. However, ribozymes that are catalytic in vitro are generally disappointing when analysed in cells unless expressed at high levels relative to their target RNAs (2, 3). Here we provide evidence that this can be overcome by optimizing ribozyme structure using cellular rather than cell-free assays. We show that ribozymes of relatively long flanking complementary regions (FCRs), while poor catalysts in vitro, can produce profound inhibition of HIV replication in cells. By examining a series of ribozymes in which the FCRs vary from 9 to 564 nucleotides, we establish that the optimum length for activity in the cell is > or = 33 nucleotides.  相似文献   

12.
In vitro replication of adeno-associated virus DNA.   总被引:23,自引:23,他引:0       下载免费PDF全文
The study of eukaryotic viral DNA replication in vitro has led to the identification of cellular enzymes involved in DNA replication. Adeno-associated virus (AAV) is distinct from previously reported systems in that it is believed to replicate entirely by leading-strand DNA synthesis and requires coinfection with adenovirus to establish completely permissive replication. In previous work, we demonstrated that two of the AAV nonstructural proteins, Rep78 and -68, are site-specific endonucleases and DNA helicases that are capable of resolving covalently closed AAV termini, a key step in AAV DNA replication. We have now cloned the AAV nonstructural proteins Rep78, Rep68, and Rep52 in the baculovirus expression system. Using the baculovirus-expressed proteins, we have developed an efficient in vitro AAV DNA replication system which mimics the in vivo behavior of AAV in every respect. With no-end AAV DNA as the starting substrate, the reaction required an adenovirus-infected cell extract and the presence of either Rep78 or Rep68. Rep52, as expected, did not support DNA replication. A mutant in the AAV terminal resolution site (trs) was defective for DNA replication in the in vitro assay. Little, if any, product was formed in the absence of the adenovirus-infected HeLa cell extract. In general, uninfected HeLa extracts were less efficient in supporting AAV DNA replication than adenovirus-infected extracts. Thus, the requirement for adenovirus infection in vivo was partially duplicated in vitro. The reduced ability of uninfected HeLa extracts to support complete DNA replication was not due to a defect in terminal resolution but rather to a defect in the reinitiation reaction or in elongation. Rep78 produced a characteristic monomer-dimer pattern of replicative intermediates, but surprisingly, Rep68 produced little, if any, dimer replicative form. The reaction had a significant lag (30 min) before incorporation of 32P-deoxynucleoside triphosphate could be detected in DpnI-resistant monomer replicative form and was linear for at least 4 h after the lag. The rate of incorporation in the reaction was comparable to that in the simian virus 40 in vitro system. Replication of the complete AAV DNA molecule was demonstrated by the following criteria. (i) Most of the monomer and dimer product DNAs were completely resistant to digestion with DpnI. (ii) Virtually all of the starting substrate was converted to heavy-light or heavy-heavy product DNA in the presence of bromo-dUTP when examined on CsCl density gradients.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Inhibition of in vitro SV40 DNA replication by ultraviolet light   总被引:2,自引:0,他引:2  
G Gough  R D Wood 《Mutation research》1989,227(3):193-197
Ultraviolet light-induced DNA damage was found to inhibit SV40 origin-dependent DNA synthesis carried out by soluble human cell extracts. Replication of SV40-based plasmids was reduced to approx. 35% of that in unirradiated controls after irradiation with 50-100 J/m2 germicidal ultraviolet light, where an average of 3-6 pyrimidine dimer photoproducts were formed per plasmid circle. Inhibition of the DNA helicase activity of T antigen (required for initiation of replication in the in vitro system) was also investigated, and was only significant after much higher fluences, 1000-5000 J/m2. The data indicate that DNA damage by ultraviolet light inhibits DNA synthesis in cell-free extracts principally by affecting components of the replication complex other than the DNA helicase activity of T antigen. The soluble system could be used to biochemically investigate the possible bypass or tolerance of DNA damage during replication.  相似文献   

14.
Antiviral therapy of chronic hepatitis B remains a major clinical problem worldwide. Like lamivudine, nucleoside analogs have become the focus of investigation of anti-hepatitis B virus (anti-HBV) drugs. Here, β-LPA is a novel 2,6-diaminopurine analog found to possess potent anti-HBV activity. In HepG2.2.15 cell line, β-LPA had a 50% effective concentration (EC50) of 0.01 μM against HBV, as determined by analysis of secreted and intracellular episomal HBV DNA. Levels of HBV surface antigen (HBsAg) and e antigen (HBeAg) in drug-treated cultures revealed that β-LPA had no significant inhibitory effects on HBsAg and HBeAg. β-LPA didn’t show any cytotoxicity up to 0.4 μM with a 50% cytotoxic concentration (CC50) of 50 μM. Furthermore, treatment with β-LPA resulted in no apparent inhibitory effects on mitochondrial DNA content. Considering the potent inhibition of HBV DNA synthesis and no obvious toxicity of β-LPA, this compound should be further explored for development as an anti-HBV drug.  相似文献   

15.
Although rapidly becoming a valuable tool for gene silencing, regulation or editing in vitro, the direct transfer of small interfering ribonucleic acids (siRNAs) into cells is still an unsolved problem for in vivo applications. For the first time, we show that specific modifications of antisense oligomers allow autonomous passage into cell lines and primary cells without further adjuvant or coupling to a cell-penetrating peptide. For this reason, we termed the specifically modified oligonucleotides "cell membrane-crossing oligomers" (CMCOs). CMCOs targeted to various conserved regions of human immunodeficiency virus (HIV)-1 were tested and compared with nontargeting CMCOs. Analyses of uninfected and infected cells incubated with labeled CMCOs revealed that the compounds were enriched in infected cells and some of the tested CMCOs exhibited a potent antiviral effect. Finally, the CMCOs did not exert any cytotoxicity and did not inhibit proliferation of the cells. In vitro, our CMCOs are promising candidates as biologically active anti-HIV reagents for future in vivo applications.  相似文献   

16.
The herpes simplex virus (HSV) virion host shutoff gene (vhs) encodes a protein which nonspecifically accelerates the degradation of mRNA molecules, leading to inhibition of protein synthesis. This ability to inhibit a critical cellular function suggested that vhs could be used as a suicide gene in certain gene therapy applications. To investigate whether vhs might be useful for treatment of AIDS, we tested the ability of both HSV type 1 (HSV-1) and HSV-2 vhs to inhibit replication of human immunodeficiency virus (HIV). Replication of HIV was substantially inhibited when an infectious HIV proviral clone was cotransfected into HeLa cells together with vhs under the control of the cytomegalovirus (CMV) immediate-early promoter. HSV-2 vhs was more active than HSV-1 vhs in these experiments, consistent with previously published studies on these genes. Since expression of vhs from the CMV promoter is essentially unregulated, we also tested the ability of vhs expressed from the HIV long terminal repeat (LTR) promoter to inhibit HIV replication. Wild-type HSV-1 vhs inhibited HIV replication more than 44,000-fold in comparison to a mutant vhs gene encoding a nonfunctional form of the Vhs protein. Production of Vhs in transfected cells was verified by Western blot assays. A larger amount of Vhs was observed in cells transfected with plasmids expressing vhs from the HIV LTR than from the CMV promoter, consistent with the greater inhibition of HIV replication observed with these constructs. Mutant forms of Vhs were expressed at higher levels than wild-type Vhs, most likely due to the ability of wild-type Vhs to degrade its own mRNA. The strong inhibitory activity of the vhs gene and its unique biological properties make vhs an interesting candidate for use as a suicide gene for HIV gene therapy.  相似文献   

17.
Using a hepatitis C virus (HCV) subgenomic RNA replicon system, drugs currently being used to treat other human diseases were examined for their antiviral activities against HCV. Several drugs including sodium stibogluconate, a compound used to treat leishmaniasis, were capable of suppressing replication of HCV replicon. The antiviral effect of sodium stibogluconate was subsequently verified using a cell line (293EBNA-Sip-L) previously proved to be permissive for HCV infection/replication. An ex vivo assay using fresh human liver slices established and a panel of human liver slices was obtained from biopsy samples of patients infected with HCV was used to examine the antiviral activity of this drug. A nearly complete suppression effect was achieved in four of six human liver slices at the drug concentration of 100 microg/ml, lower than what was required to treat leishmaniasis. A human trial is mandatory to understand its clinical value in treating chronic hepatitis C.  相似文献   

18.
Sera T 《Journal of virology》2005,79(4):2614-2619
Prevention of virus infections is a major objective in agriculture and human health. One attractive approach to the prevention is inhibition of virus replication. To demonstrate this concept in vivo, an artificial zinc finger protein (AZP) targeting the replication origin of the Beet severe curly top virus (BSCTV), a model DNA virus, was created. In vitro DNA binding assays indicated that the AZP efficiently blocked binding of the viral replication protein (Rep), which initiates virus replication, to the replication origin. All of the transgenic Arabidopsis plants expressing the AZP showed phenotypes strongly resistant to virus infection, and 84% of the transgenic plants showed no symptom. Southern blot analysis demonstrated that BSCTV replication was completely suppressed in the transgenic plants. Since the mechanism of viral DNA replication is well conserved among plants and mammals, this approach could be applied not only to agricultural crop protection but also to the prevention of virus infections in humans.  相似文献   

19.
20.
Initiation of simian virus 40 DNA replication in vitro.   总被引:25,自引:3,他引:25       下载免费PDF全文
Exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro by a mixture of a soluble extract of HeLa cell nuclei and the cytoplasm from SV40-infected CosI cells. When cloned DNA was used as a template, the clone containing the SV40 origin of DNA replication was active, but a clone lacking the SV40 origin was inactive. The major products of the in vitro reaction were form I and form II SV40 DNAs and a small amount of form III. DNA synthesis in extracts began at or near the in vivo origin of SV40 DNA synthesis and proceeded bidirectionally. The reaction was inhibited by the addition of anti-large T hamster serum, aphidicolin, or RNase but not by ddNTP. Furthermore, this system was partially reconstituted between HeLa nuclear extract and the semipurified SV40 T antigen instead of the CosI cytoplasm. It is clear from these two systems that the proteins containing SV40 T antigen change the nonspecific repair reaction performed by HeLa nuclear extract alone to the specific semiconservative DNA replication reaction. These results show that these in vitro systems closely resemble SV40 DNA replication in vivo and provide an assay that should be useful for the purification and subsequent characterization of viral and cellular proteins involved in DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号