首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein, plays a central role in the repair of oxidative base damage via the DNA base excision repair (BER) pathway. The mammalian AP-endonuclease (APE1) overexpression is often observed in tumor cells, and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to those agents via induction of apoptosis. Here we show that wild type (WT) but not mutant p53 negatively regulates APE1 expression. Time-dependent decrease was observed in APE1 mRNA and protein levels in the human colorectal cancer line HCT116 p53(+/+), but not in the isogenic p53 null mutant after treatment with camptothecin, a DNA topoisomerase I inhibitor. Furthermore, ectopic expression of WTp53 in the p53 null cells significantly reduced both endogenous APE1 and APE1 promoter-dependent luciferase expression in a dose-dependent fashion. Chromatin immunoprecipitation assays revealed that endogenous p53 is bound to the APE1 promoter region that includes a Sp1 site. We show here that WTp53 interferes with Sp1 binding to the APE1 promoter, which provides a mechanism for the downregulation of APE1. Taken together, our results demonstrate that WTp53 is a negative regulator of APE1 expression, so that repression of APE1 by p53 could provide an additional pathway for p53-dependent induction of apoptosis in response to DNA damage.  相似文献   

3.
4.
5.
AP endonuclease (APE), with dual activities as an endonuclease and a 3' exonuclease, is a central player in repair of oxidized and alkylated bases in the genome via the base excision repair (BER) pathway. APE acts as an endonuclease in repairing AP sites generated spontaneously or after base excision during BER. It also removes the 3' blocking groups in DNA generated directly by ROS or after AP lyase reaction. In contrast to E. coli and lower eukaryotes which express two distinct APEs of Xth and Nfo types, mammalian genomes encode only one APE, APE1, which is of the Xth type. However, while the APEs together are dispensable in the bacteria and simple eukaryotes, APE1 is essential for mammalian cells. We have shown that apoptosis of mouse embryo fibroblasts triggered by APE1 inactivation can be prevented by ectopic expression of repair competent but not repair-defective APE1. The mitochondrial APE (mtAPE) is an N-terminal truncation product of APE1. A significant fraction of APE1 is cytosolic, and oxidative stress induces its nuclear and mitochondrial translocation. Such age-dependent increase in APE activity in the nucleus and mitochondria is consistent with the hypothesis that aging is associated with chronic oxidative stress.  相似文献   

6.
7.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase homologue attributed to the mitotic cyclin-dependent kinase family. Both the kinase activity and the biological effects of CDK5 in central nervous system are mainly dependent on association with its regulatory subunit 1 known as CDK5R1 (p35). In the present study, the full-length coding regions of CDK5 and CDK5R1 were cloned from pigs. Radiation hybrid mapping localized porcine CDK5 to chromosome 18q12-13, whereas CDK5R1 was electro-localized to chromosome 12q12. Real-time quantitative RT-PCR (qRT-PCR) showed that CDK5 mRNA is ubiquitously present in all porcine tissues examined, with relatively high levels in cerebral cortex, cerebellum, testicle and lung. We also examined the expression profile of porcine CDK5/CDK5R1 in various tissues at different developmental stages. The results indicated that CDK5 mRNA reaches the highest level in cerebral cortex at two months of age and in cerebellum and liver at 4 months of age, respectively, whereas the peak level of CDK5R1 was observed in both cerebral cortex and cerebellum at two months of age, indicating the pivotal role of CDK5/CDK5R1 during the development of porcine brain.  相似文献   

8.
We have recently identified apurinic/apyrimidinic endonuclease 1 (APE1) as an endoribonuclease that cleaves c-myc mRNA in vitro and regulates c-myc mRNA levels and half-life in cells. This study was undertaken to further unravel the RNA-cleaving properties of APE1. Here, we show that APE1 cleaves RNA in the absence of divalent metal ions and, at 2 mM, Zn2+, Ni2+, Cu2+, or Co2+ inhibited the endoribonuclease activity of APE1. APE1 is able to cleave CD44 mRNA, microRNAs (miR-21, miR-10b), and three RNA components of SARS-corona virus (orf1b, orf3, spike) suggesting that, when challenged, it can cleave any RNAs in vitro. APE1 does not cleave strong doublestranded regions of RNA and it has a strong preference for 3’ of pyrimidine, especially towards UA, CA, and UG sites at single-stranded or weakly paired regions. It also cleaves RNA weakly at UC, CU, AC, and AU sites in single-stranded or weakly paired regions. Finally, we found that APE1 can reduce the ability of the Dicer enzyme to process premiRNAs in vitro. Overall, this study has revealed some previously unknown biochemical properties of APE1 which has implications for its role in vivo.  相似文献   

9.
Zou X  Ji C  Jin F  Liu J  Wu M  Zheng H  Wang Y  Li X  Xu J  Gu S  Xie Y  Mao Y 《Genes & genetic systems》2004,79(3):177-182
Two novel splice variants of CDK5RAP1, named CDK5RAP1_v3 and CDK5RAP1_v4, were isolated through the large-scale sequencing analysis of a human fetal brain cDNA library. The CDK5RAP1_v3 and CDK5RAP1_v4 cDNAs are 1923bp and 1792bp in length, respectively. Sequence analysis revealed that CDK5RAP1_v4 lacked 1 exon, which was present in CDK5RAP1_v3, with the result that these cDNAs encoded different putative proteins. The deduced proteins were 574 amino acids (designated as CDK5RAP1_v3) and 426 amino acids (CDK5RAP1_v4) in length, and shared the 420 N-terminal amino acids. RT-PCR analysis showed that human CDK5RAP1_v3 was widely expressed in human tissues. The expression level of CDK5RAP1_v3 was relatively high in placenta and lung, whereas low levels of expression were detected in heart, brain, liver, skeletal muscle, pancreas, spleen, thymus, small intestine and peripheral blood leukocytes. In contrast, human CDK5RAP1_v4 was mainly expressed in brain, placenta and testis.  相似文献   

10.
11.
12.
13.
Cyclin-dependent kinase 5 (CDK5) and neuronal cell death   总被引:5,自引:0,他引:5  
Many neurological disorders like Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis (ALS) or stroke have in common a definite loss of CNS neurons due to apoptotic or necrotic neuronal cell death. Previous studies suggested that proapoptotic stimuli may trigger an abortive and, therefore, eventually fatal cell cycle reentry in postmitotic neurons. Neuroprotective effects of small molecule inhibitors of cyclin-dependent kinases (CDKs), which are key regulators of cell cycle progression, support the cell cycle theory of neuronal apoptosis. However, growing evidence suggests that deregulated CDK5, which is not involved in cell cycle control, rather than cell cycle relevant members of the CDK family, promotes neuronal cell death. Here we summarize the current knowledge about the involvement of CDK5 in neuronal cell death and discuss possible up- or downstream partners of CDK5. Moreover, we discuss potential therapeutic options that might arise from the identification of CDK5 as an important upstream element of neuronal cell death cascades.  相似文献   

14.
Altered T cell adherence after human immunodeficiency virus 1 (HIV-1) infection may contribute to viral pathogenesis in the acquired immune deficiency syndrome. To address this hypothesis, we assessed mechanisms of T cell adherence to extracellular matrix proteins in vitro. We found that after HIV-1 infection, both chronically infected H9 CD4+ T cells and acutely infected primary peripheral blood lymphocytes acquired the ability to adhere to the extracellular matrix glycoprotein fibronectin, to a lesser extent to type IV collagen and laminin, but not to type I collagen. H9 cells chronically infected with two of the three HIV-1 strains studied showed approximately a sevenfold increase in attachment to fibronectin, while the same cells infected with the human retrovirus HIV-2 did not. Adhesion was accompanied by changes in morphology, including marked spreading and increased filopodia. These alterations were not blocked by the protein kinase C inhibitor H-7, which did inhibit TPA-induced T cell attachment to fibronectin. Monoclonal antibodies against both the alpha 5 and the beta 1 subunits of the classical fibronectin receptor as well as an Arg-Gly-Asp (RGD) peptide inhibited attachment, whereas anti-alpha 4 monoclonal antibodies and the CS1 peptide did not. Binding to collagen IV was also inhibited by the anti-beta 1 monoclonal antibody, but not the other antibodies. Cells metabolically labeled with [35S]methionine and analyzed by immunoprecipitation with polyclonal anti-beta 1 integrin antibody showed a 2.5-fold increase in integrin synthesis in infected cells compared to uninfected controls. This increase in synthesis was associated with an increase in cell surface expression of both alpha 5 and beta 1 integrins by FACS (registered trademark of Becton Dickinson for a fluorescence-activated cell sorter) analysis. Enhanced expression of integrins such as alpha 5 beta 1 may cause T cell adherence to a variety of tissues, where released viral gene products may induce some of the tissue-specific manifestations of HIV-1 infection.  相似文献   

15.
HLA-DM plays an essential role in the peptide loading of classical class II molecules and is present both at the cell surface and in late endosomal peptide-loading compartments. Trafficking of DM within antigen-presenting cells is complex and is, in part, controlled by a tyrosine-based targeting signal present in the cytoplasmic tail of DMβ. Here, we show that DM also undergoes post-translational modification through ubiquitination of a single lysine residue present in the cytoplasmic tail of the α chain, DMα. Ubiquitination of DM by MARCH1 and MARCH9 induced loss of DM molecules from the cell surface by a mechanism that cumulatively involved both direct attachment of ubiquitin chains to DMα and a functional tyrosine-based signal on DMβ. In contrast, MARCH8-induced loss of surface DM was entirely dependent upon the tyrosine signal on DMβ. In the absence of this tyrosine residue, levels of DM remained unchanged irrespective of whether DMα was ubiquitinated by MARCH8. The influence of MARCH8 was indirect and may have resulted from modification of components of the endocytic machinery by ubiquitination.  相似文献   

16.
Smad ubiquitin regulatory factors (Smurfs) are HECT-domain ubiquitin E3 ligases that regulate diverse cellular processes, including normal and tumor cell migration. However, the underlying mechanism of the Smurfs'' role in cell migration is not fully understood. Here we show that Smurf1 induces ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) at K190. Using the K190R mutant of TRAF4, we demonstrate that Smurf1-induced ubiquitination is required for proper localization of TRAF4 to tight junctions in confluent epithelial cells. We further show that TRAF4 is essential for the migration of both normal mammary epithelial and breast cancer cells. The ability of TRAF4 to promote cell migration is also dependent on Smurf1-mediated ubiquitination, which is associated with Rac1 activation by TRAF4. These results reveal a new regulatory circuit for cell migration, consisting of Smurf1-mediated ubiquitination of TRAF4 and Rac1 activation.  相似文献   

17.
Deciphering the inositol-requiring enzyme 1 (IRE1) signaling pathway is fundamentally important for understanding the unfolded protein response (UPR). The ubiquitination of proteins residing on the endoplasmic reticulum (ER) membrane has been reported to be involved in the UPR, although the mechanism has yet to be fully elucidated. Using immunoprecipitation and mass spectrometry, IRE1 was identified as a substrate of the E3 ligase CHIP (carboxyl terminus of HSC70-interacting protein) in HEK293 cells under geldanamycin-induced ER stress. Two residues of IRE1, Lys545 and Lys828, were targeted for Lys63-linked ubiquitination. Moreover, in CHIP knockdown cells, IRE1 phosphorylation and the IRE1-TRAF2 interaction were nearly abolished under ER stress, which may be due to lacking ubiquitination of IRE1 on Lys545 and Lys828, respectively. The cellular responses were evaluated, and the data indicated that CHIP-regulated IRE1/TRAF2/JNK signaling antagonized the senescence process. Therefore, our findings suggest that CHIP-mediated ubiquitination of IRE1 contributes to the dynamic regulation of the UPR.  相似文献   

18.
Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1, without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC(50) values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 μM and 80 nM, respectively. The K(D) values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased (Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced degradation was drastically reduced in the presence of short and long lived free radical scavengers, e.g., TRIS and DMSO, suggesting that the mechanism of APE1 breakdown may involve free radical-induced peptide bond cleavage.  相似文献   

19.
Translation initiation factor 4E (eIF4E) is a cytoplasmic cap-binding protein that is required for cap-dependent translation initiation. Here, we have shown that eIF4E is ubiquitinated primarily at Lys-159 and incubation of cells with a proteasome inhibitor leads to increased eIF4E levels, suggesting the proteasome-dependent proteolysis of ubiquitinated eIF4E. Ubiquitinated eIF4E retained its cap binding ability, whereas eIF4E phosphorylation and eIF4G binding were reduced by ubiquitination. The W73A mutant of eIF4E exhibited enhanced ubiquitination/degradation, and 4E-BP overexpression protected eIF4E from ubiquitination/degradation. Because heat shock or the expression of the carboxyl terminus of heat shock cognate protein 70-interacting protein (Chip) dramatically increased eIF4E ubiquitination, Chip may be at least one ubiquitin E3 ligase responsible for eIF4E ubiquitination.  相似文献   

20.
Mitochondria are dynamic organelles that undergo permanent fission and fusion events. These processes play an essential role in maintaining normal cellular function. In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum-mitochondrial encounter structure (ERMES) is a marker of sites of mitochondrial division, but it is also involved in a plethora of other mitochondrial functions. However, it remains unclear how these different functions are regulated. We show here that Mdm34 and Mdm12, 2 components of ERMES, are ubiquitinated by the E3 ligase Rsp5. This ubiquitination is not involved in mitochondrial dynamics or in the distribution and turnover of ERMES. Nevertheless, the ubiquitination of Mdm34 and Mdm12 was required for efficient mitophagy. We thus report here the first identification of ubiquitinated substrates participating in yeast mitophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号