首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosis is a prominent clathrin-mediated mechanism for concentrated uptake and internalization of ligand-receptor complexes, also known as cargo. Internalization of cargo is the fundamental mechanism for receptor-dependent regulation of cell membrane function, intracellular signal transduction, and neurotransmission, as well as other biological and physiological activities. However, the intrinsic mechanisms of receptor endocytosis and contemporaneous intracellular signaling are not well understood. We review emerging concepts of receptor endocytosis with concurrent intracellular signaling, using a typical example of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) internalization, subcellular trafficking, and simultaneous generation of second-messenger cGMP and signaling in intact cells. We highlight the role of short-signal motifs located in the carboxyl-terminal regions of membrane receptors during their internalization and subsequent receptor trafficking in organelles that are not traditionally studied in this context, including nuclei and mitochondria. This review sheds light on the importance of future investigations of receptor endocytosis and trafficking in live cells and intact animals in vivo in physiological context.  相似文献   

2.
Intracellular trafficking underlies cellular functions ranging from membrane remodeling to receptor activation. During multicellular organ development, these basic cell biological functions are required as both passive machinery and active signaling regulators. Exocytosis, endocytosis, and recycling of several key signaling receptors have long been known to actively regulate morphogenesis and pattern formation during Drosophila eye development. Hence, intracellular membrane trafficking not only sets the cell biological stage for receptor-mediated signaling but also actively controls signaling through spatiotemporally regulated receptor localization. In contrast to eye development, the role of intracellular trafficking for the establishment of the eye-to-brain connectivity map has only recently received more attention. It is still poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Yet, the Drosophila visual system provides some of the most striking examples for the regulatory role of intracellular trafficking during multicellular organ development. In this review we will first highlight the experimental and conceptual advances that motivate the study of intracellular trafficking during Drosophila visual system development. We will then illuminate the development of the eye, the eye-to-brain connectivity map and the optic lobe from the perspective of cell biological dynamics. Finally, we provide a conceptual framework that seeks to explain how the interplay of simple genetically encoded intracellular trafficking events governs the seemingly complex cellular behaviors, which in turn determine the developmental product.  相似文献   

3.
Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368]  相似文献   

4.
Reggie-1/flotillin-2 and reggie-2/flotillin-1 are ubiquitously expressed, well-conserved proteins that are associated with membrane microdomains known as rafts. Studies from us and others have suggested a role in various cellular processes such as insulin signaling, T cell activation, membrane trafficking, phagocytosis, and epidermal growth factor receptor signaling. Recent findings also demonstrate that reggie-1 is associated with cell motility and transformation. However, the exact function of reggie proteins remains to be clarified. In this review, we will focus on some recent findings that have shed new light on the elusive molecular function of these highly interesting proteins. We will especially discuss the emerging role of reggie proteins in membrane receptor signaling and membrane trafficking, with emphasis on the regulation of the molecular function of reggies by post-translational modifications such as phosphorylation and lipid modifications.  相似文献   

5.
Endocytosis is a fine-tuned mechanism of cellular communication through which cells internalize molecules on the plasma membrane, such as receptors and their bound ligands. Through receptor clustering in endocytic pits, recruitment of active receptors to different endocytic routes and their trafficking towards different fates, endocytosis modulates cell signaling and ultimately leads to a variety of biological responses. Many studies have focused their attention on specialized endocytic mechanisms depending on the nature of the internalizing cargo and cellular context, distinct sets of coat proteins, endocytic adaptors and membrane lipids. Here, we review recent advances in our understanding of the principles underlying endocytic vesicle formation, integrating both biochemical and biophysical factors, with a particular focus on intrinsically disordered regions (IDRs) creating weakly interconnected protein networks assembled through liquid–liquid phase separation (LLPS) and driving membrane bending especially in clathrin-mediated endocytosis (CME). We finally discuss how these properties impinge on receptor fate and signaling.  相似文献   

6.
7.
The delta-opioid receptor (DOR) belongs to the superfamily of G-protein-coupled receptors (GPCRs) with seven transmembrane domains, and its membrane trafficking is regulated by intracellular sorting processes involving its C-tail motifs, intracellular sorting proteins, and several intracellular signaling pathways. In the quiescent state, DOR is generally located in the intracellular compartments in central neurons. However, chronic stimulation, such as chronic pain and sustained opioid exposure, may induce membrane trafficking of DOR and its translocation to surface membrane. The emerged functional DOR on cell membrane is actively involved in pain modulation and opioid analgesia. This article reviews current understanding of the mechanisms underlying GPCRs and DOR membrane trafficking, and the analgesic function of emerged DOR through membrane trafficking under certain pathophysiological circumstances.  相似文献   

8.
Cellular life depends on protein transport and membrane traffic. In multicellular organisms, membrane traffic is required for extracellular matrix deposition, cell adhesion, growth factor release, and receptor signaling, which are collectively required to integrate the development and physiology of tissues and organs. Understanding the regulatory mechanisms that govern cargo and membrane flow presents a prime challenge in cell biology. Extracellular matrix (ECM) secretion remains poorly understood, although given its essential roles in the regulation of cell migration, differentiation, and survival, ECM secretion mechanisms are likely to be tightly controlled.Recent studies in vertebrate model systems, from fishes to mammals and in human patients, have revealed complex and diverse loss-of-function phenotypes associated with mutations in components of the secretory machinery. A broad spectrum of diseases from skeletal and cardiovascular to neurological deficits have been linked to ECM trafficking. These discoveries have directly challenged the prevailing view of secretion as an essential but monolithic process. Here, we will discuss the latest findings on mechanisms of ECM trafficking in vertebrates.  相似文献   

9.
Signaling to Rho GTPases   总被引:20,自引:0,他引:20  
  相似文献   

10.
Fu X  Yang Y  Xu C  Niu Y  Chen T  Zhou Q  Liu JJ 《Molecular biology of the cell》2011,22(19):3684-3698
Brain-derived neurotrophic factor (BDNF) binds to its cell surface receptor TrkB to regulate differentiation, development, synaptic plasticity, and functional maintenance of neuronal cells. Binding of BDNF triggers TrkB dimerization and autophosphorylation, which provides docking sites for adaptor proteins to recruit and activate downstream signaling molecules. The molecular mechanisms underlying BDNF-TrkB endocytic trafficking crucial for spatiotemporal control of signaling pathways remain to be elucidated. Here we show that retrolinkin, a transmembrane protein, interacts with endophilin A1 and mediates BDNF-activated TrkB (pTrk) trafficking and signaling in CNS neurons. We find that activated TrkB colocalizes and interacts with the early endosome marker APPL1. Both retrolinkin and endophilin A1 are required for BDNF-induced dendrite development and acute extracellular signal-regulated kinase activation from early endosomes. Suppression of retrolinkin expression not only blocks BDNF-triggered TrkB internalization, but also prevents recruitment of endophilin A1 to pTrk vesicles trafficking through APPL1-positive endosomes. These findings reveal a novel mechanism for BDNF-TrkB to regulate signaling both in time and space through a specific membrane trafficking pathway.  相似文献   

11.
Prossnitz ER 《Life sciences》2004,75(8):893-899
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling molecules in the human genome. As such, they interact with numerous intracellular molecules, which can act either to propagate or curtail signaling from the receptor. Their primary mode of cellular activation occurs through heterotrimeric G proteins, which in turn can activate a wide spectrum of effector molecules, including phosphodiesterases, phospholipases, adenylyl cyclases and ion channels. Active GPCRs are also the target of G protein-coupled receptor kinases, which phosphorylate the receptors culminating in the binding of the protein arrestin. This results in rapid desensitization through inhibition of G protein binding, as well as novel mechanisms of cellular activation that involve the scaffolding of cellular kinases to GPCR-arrestin complexes. Arrestins can also serve to mediate the internalization of certain GPCRs, a process which plays an important role in regulating cellular activity both by mediating long-term desensitization through down regulation (degradation) of receptors and by recycling desensitized receptors back to the cell surface to initiate additional rounds of signaling. The mechanisms that regulate the subsequent intracellular trafficking of GPCRs following internalization are largely unknown. Recently however, it has become clear that the pattern of receptor phosphorylation and subsequent binding of arrestin play a critical role in the intracellular trafficking of internalized receptors, thereby dictating the ultimate fate of the receptor. In addition, arrestins have now been shown to be required for the recycling of GPCRs that are capable of internalizing through arrestin-independent mechanisms. This review will summarize recent advances in our understanding of the roles of arrestins in post-endocytic GPCR trafficking.  相似文献   

12.
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.  相似文献   

13.
磷脂酰肌醇转移蛋白(phosphatidylinositol/phosphatidylcholine transfer proteins,PITP)普遍存在于真核生物细胞中,PITP能够结合并交换一分子的磷脂酰肌醇(phosphatidylinositol,PI)或磷脂酰胆碱(phosphatidylcholine,PC),并促进这两类脂分子在细胞内膜组分间的转移。PITP对细胞内膜组分间脂类的运输和代谢、分泌囊泡的形成和运输、磷脂酶C(phospholipase,PLC)调节的信号传导以及神经退化等生理生化过程具有重要的影响。综述了近年来PITP的研究进展,并对目前研究中存在的一些问题进行探讨。  相似文献   

14.
Glucagon-like peptide-2 (GLP-2) is a pleiotropic hormone that affects multiple facets of intestinal physiology, including growth, barrier function, digestion, absorption, motility, and blood flow. The mechanisms through which GLP-2 produces these actions are complex, involving unique signaling mechanisms and multiple indirect mediators. As clinical trials have begun for the use of GLP-2 in a variety of intestinal disorders, the elucidation of such mechanisms is vital. The GLP-2 receptor (GLP-2R) is a G protein-coupled receptor, signaling through multiple G proteins to affect the cAMP and mitogen-activated protein kinase pathways, leading to both proliferative and antiapoptotic cellular responses. The GLP-2R also demonstrates unique mechanisms for receptor trafficking. Expression of the GLP-2R in discrete sets of intestinal cells, including endocrine cells, subepithelial myofibroblasts, and enteric neurons, has led to the hypothesis that GLP-2 acts indirectly through multiple mediators to produce its biological effects. Indeed, several studies have now provided important mechanistic data illustrating several of the indirect pathways of GLP-2 action. Thus, insulin-like growth factor I has been demonstrated to be required for GLP-2-induced crypt cell proliferation, likely involving activation of beta-catenin signaling. Furthermore, vasoactive intestinal polypeptide modulates the actions of GLP-2 in models of intestinal inflammation, while keratinocyte growth factor is required for GLP-2-induced colonic mucosal growth and mucin expression. Finally, enteric neural GLP-2R signaling affects intestinal blood flow through a nitric oxide-dependent mechanism. Determining how GLP-2 produces its full range of biological effects, which mediators are involved, and how these mediators interact is a continuing area of active research.  相似文献   

15.
VEGF signaling inside vascular endothelial cells and beyond   总被引:1,自引:0,他引:1  
Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles.  相似文献   

16.
The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction.  相似文献   

17.
18.
Binding of fluorescein isothiocyanate (FITC)-conjugated cholera toxin B subunit to ganglioside GM1 on RBL-2H3 cells at 37 °C results in labeling of the plasma membrane as well as a pool of perinuclear intracellular membranes identified as the endosomal recycling compartment. Antigen-mediated activation of IgE receptor signaling causes rapid, sustained outward trafficking of these labeled endosomes, that is monitored as an increase in FITC fluorescence due to relief of quenching in the acidic endosomes upon delivery to the plasma membrane. Stimulation of this process depends on the integrity of cholesterol-dependent lipid rafts and occurs in response to Ca2+-mobilizing thapsigargin as well as antigen. Inhibitors of some early signaling enzymes stimulated by FcεRI, including Syk tyrosine kinase and phosphoinositide 3-kinase, have little or no effect on this trafficking response. Other signaling pathways, including activation of phospholipase C and Ca2+ influx, do not appear to be necessary for the initiation of the outward trafficking response, but they contribute to maintaining the sustained phase of this process. Consistent with this, antigen-stimulated ruffles are labeled with FITC-cholera toxin B in a Ca2+-dependent manner. Thus, this trafficking response provides a mechanism by which an internal membrane pool can contribute to plasma membrane remodeling during stimulated membrane ruffling, cell motility, and phagocytosis.  相似文献   

19.
The ErbB family of four receptor tyrosine kinases occupies a central role in a wide variety of biological processes from neuronal development to breast cancer. New information continues to expand their biologic significance and to unravel the molecular mechanisms that underlie the signaling capacity of these receptors. Here, we review several aspects of ErbB receptor physiology for which new and significant information is available. These include ligand-dependent receptor dimerization and kinase activation, which is a prerequisite for all subsequent growth factor-dependent cell responses. We also address novel roles of receptor fragments in signaling, trafficking to intracellular sites, such as the nucleus, and ErbB roles in non-cancer disease processes, including schizophrenia, chronic renal disease, hypertension, and the cellular entry of infectious pathogens.  相似文献   

20.
Although members of the ErbB receptor family are found predominantly at the cell surface, these receptors undergo constant cycling between the plasma membrane and the endosomal compartment. In the absence of an activating ligand, these receptors are slowly internalized (t(1/2) approximately 30 min) but are quickly recycled. The constitutive degradation rate of the epidermal growth factor (EGF) receptor (EGFR) is slower than other ErbB family members and only the EGFR appears to alter its trafficking pattern in response to ligand binding. This altered pattern is characterized by accelerated internalization and enhanced lysosomal targeting. Ligand-regulated trafficking of the EGFR is mediated by a series of motifs distributed through the cytoplasmic domain of the receptor that are exposed by a combination of activation-mediated conformation changes and the binding of proteins such as Grb2. As a consequence of induced internalization, most EGFR signaling occurs within endosomes whereas signaling by the other members of the ErbB family appear to be generated predominantly from the cell surface. Overexpression of ErbB family members can disrupt normal receptor trafficking by driving heterodimerization of receptors with disparate trafficking patterns. Because different ErbB receptor substrates are localized in different cellular compartments, disrupted trafficking could be an important factor in the altered signaling patterns observed as a consequence of receptor overexpression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号