首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified a new Arabidopsis mutant, yore-yore (yre), which has small trichomes and glossy stems. Adhesion between epidermal cells was observed in the organs of the yre shoot. The cloned YRE had high homology to plant genes involved in epicuticular wax synthesis, such as ECERIFERUM1 (CER1) and maize GLOSSY1. The phenotype of transgenic plants harboring double-stranded RNA interference (dsRNAi) YRE was quite similar to that of the yre mutant. The amount of epicuticular wax extracted from leaves and stems of yre-1 was approximately one-sixth of that from the wild type. YRE promoter::GUS and in situ hybridization revealed that YRE was specifically expressed in cells of the L1 layer of the shoot apical meristem and young leaves, stems, siliques, and lateral root primordia. Strong expression was detected in developing trichomes. The trichome structure of cer1 was normal, whereas that of the yre cer1 double mutant was heavily deformed, indicating that epicuticular wax is required for normal growth of trichomes. Double mutants of yre and trichome-morphology mutants, glabra2 (gl2) and transparent testa glabra1 (ttg1), showed that the phenotype of the trichome structure was additive, suggesting that the wax-requiring pathway is distinct from the trichome development pathway controlled by GL2 and TTG1.  相似文献   

2.
Control of plant trichome development by a cotton fiber MYB gene   总被引:33,自引:0,他引:33       下载免费PDF全文
Wang S  Wang JW  Yu N  Li CH  Luo B  Gou JY  Wang LJ  Chen XY 《The Plant cell》2004,16(9):2323-2334
  相似文献   

3.
This is an addendum to our recent paper published in The Plant Journal (52:352–61). The major findings were: (1) trichomes on the leaves of gl3-sst sim double mutants developed as large multi-cellular clusters whereas wild type trichomes are composed of single cells; (2) ectopic CYCD3;1 expression in gl3-sst trichomes also resulted in trichome cluster formation; and (3) that GL1 expression is prolonged in the gl3-sst sim trichome clusters. This addendum shows that ectopic CYCD3;1 expression in gl3-sst also enhanced GL1 expression. An analysis of the GL1 promoter found two overlapping potential E2F binding sites in a region of the promoter known to be essential for GL1 function. This finding indicates that GL1 may be directly regulated by the activity of a CYCD3/CDKA complex that phosphorylates E2F-RB bound to the GL1 promoter.Key words: plant cell cycle, endoreduplication, glabra1, plant development  相似文献   

4.
5.
6.
7.
Previously characterized Arabidopsis gl3 mutants have trichomes that are smaller, less branched and undergo fewer rounds of endoreplication than wild-type trichomes. A new gl3 mutant, called gl3-sst, has oddly shaped trichomes that over expand during early development, undergo more endoreduplication and that have a striking nuclear morphology. The mutant nuclei consist of many interconnected lobes; however, only a single set of polytene-like chromosomes reside in the mutant nuclei. The predicted gl3-sst polypeptide has a Leu to Phe substitution (codon 78) within a region responsible for protein-protein interaction. Yeast interaction assays comparing GL3 with gl3-sst proteins show that the mutant protein interaction with GL1 and TTG1 is decreased by 75% and 50%, respectively, but there is no difference in its interaction with TRY. Furthermore, TRY has the ability to prevent the GL1 GL3 interaction and the GL1 gl3-sst interaction is even more sensitive to TRY. Analysis of plants expressing functional GFP-tagged versions of GL1, GL3 and TRY show that the proteins are localized in trichome nuclei. These results have been used to model trichome initiation in terms of protein interactions and threshold levels of activator complex.  相似文献   

8.
9.
10.
Transformation with the Arabidopsis bHLH gene 35S:GLABRA3 (GL3) produced novel B. napus plants with an extremely dense coverage of trichomes on seedling tissues (stems and young leaves). In contrast, trichomes were strongly induced in seedling stems and moderately induced in leaves of a hairy, purple phenotype transformed with a 2.2 kb allele of the maize anthocyanin regulator LEAF COLOUR (Lc), but only weakly induced by BOOSTER (B-Peru), the maize Lc 2.4 kb allele, or the Arabidopsis trichome MYB gene GLABRA1 (GL1). B. napus plants containing only the GL3 transgene had a greater proportion of trichomes on the adaxial leaf surface, whereas all other plant types had a greater proportion on the abaxial surface. Progeny of crosses between GL3+ and GL1+ plants resulted in trichome densities intermediate between a single-insertion GL3+ plant and a double-insertion GL3+ plant. None of the transformations stimulated trichomes on Brassica cotyledons or on non-seedling tissues. A small portion of bHLH gene-induced trichomes had a swollen terminal structure. The results suggest that trichome development in B. napus may be regulated differently from Arabidopsis. They also imply that insertion of GL3 into Brassica species under a tissue-specific promoter has strong potential for developing insect-resistant crop plants. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
Homozygous glabra2 (gl2) mutant Arabidopsis thaliana Landsberg erecta plants with only a few rudimentary single spiked trichomes on the leaf margin were transformed with a genomic clone of GL2, resulting in partial restoration of the normal leaf trichome phenotype. The introduced GL2 transgene was configured as part of an FLP recombinase-responsive gene switch, which permitted visibly marked gl2 mutant clonal sectors to be generated by FLP recombinase-mediated deletion of the GL2 transgene with concomitant activation of a previously silent beta-glucuronidase (GUS) marker gene. GUS marked sectors extending through all three leaf cell layers (L1, L2, and L3) displayed the anticipated gl2 mutant phenotype, whereas immediately adjacent unmarked tissue, and unmarked tissues overlaying GUS sectors restricted to the L2 and/or L3 cell layers, retained the GL2 restored phenotype. These data support the view that the GL2 gene product acts in a region-autonomous manner within a single cell layer and indicate that GL2 gene expression in the L1 layer is sufficient for GL2-directed outgrowth of trichomes.  相似文献   

12.
Most of the plant homeodomain-containing proteins play important roles in organ patterning and development, and Arabidopsis GLABRA2 (GL2), a member of the class IV homeodomain-leucine zipper (HD-ZIP) proteins, is a trichome and non-root hair cell regulator. Here we report the analysis of two cotton homeodomain-containing proteins, GaHOX1 and GaHOX2, isolated from the diploid cotton Gossypium arboreum . Both GaHOX1 and GaHOX2 belong to the class IV HD-ZIP family. When expressed under the control of the GL2 promoter, GaHOX1 rescued trichome development of an Arabidopsis glabrous mutant of gl2-2 (SALK_130213), whereas GaHOX2 did not. On the other hand, expression of GaHOX1 with a Cauliflower mosaic virus (CaMV) 35S promoter in the wild-type Arabidopsis plants suppressed the trichome development just as the GL2 ectopic expression. Expression analysis by Northern, RT-PCR and in situ hybridization indicated that GaHOX1 is predominantly expressed in cotton fiber cells at early developmental stages, consistent with its putative role in regulating cotton fiber development, while GaHOX2 is expressed in both fiber and other ovular tissues, including outer and inner integuments. Our results suggest that GaHOX1 is a functional homolog of GL2 in plant trichome development.  相似文献   

13.
14.
Trichomes in Arabidopsis are single-celled hairs that exhibit a regular spacing pattern. Here, the role of TRIPTYCHON (TRY) in the generation of this spacing pattern is studied. By using genetic mosaics, we demonstrate that the formation of trichome clusters in try mutants is not correlated with cell lineage, indicating that TRY is required to single out trichome cells in a process involving cellular interactions. The genetic interactions of TRY, GLABRA1 (GL1), and TRANSPARENT TESTA GLABRA (T TG) in trichome patterning are assessed by determining the cluster frequency in various genetic combinations. It is shown that TRY acts as a negative regulator of GL1- and TTG-dependent pathways. Furthermore, it is demonstrated that trichome initiation in ttg-1, a strong ttg allele, is rescued almost to wild-type levels in a try background in which GL1 is expressed under the control of the cauliflower mosaic virus 35S promoter, indicating that T TG acts upstream of GL1 and TRY. These findings are incorporated into a model to explain the generation of a trichome spacing pattern from a homogeneous population of epidermal cells.  相似文献   

15.
16.
植物细胞命运决定机制的解析一直以来都是植物发育生物学研究的核心.模式植物拟南芥的表皮毛形成过程是研究植物细胞命运决定的优良模式系统.为了筛选和鉴定控制拟南芥表皮毛形成的新因子,我们进行了大规模的正向遗传筛选,获得了两株莲座叶表皮毛不能形成或数量显著减少的突变体f08-01和vat002-07.通过对突变基因的克隆和遗传...  相似文献   

17.
18.
Marks MD  Feldmann KA 《The Plant cell》1989,1(11):1043-1050
Progeny from a transformed Arabidopsis plant (produced by the Agrobacterium-mediated seed transformation procedure) were found to be segregating for an altered trichome phenotype. The mutant plants have normal leaf trichomes but completely lack trichomes usually found on the stem. The mutation is tightly linked to a T-DNA insert. Complementation analysis with genetically characterized trichome mutants revealed that the new mutation is an allele of the GL1 locus. The new trichome mutant has been designated gl1-43. DNA gel blot analysis indicated that the insert site contains a complex array of at least four tandemly linked T-DNA units oriented as both direct and inverted repeats. A genomic library, constructed using DNA from gl1-43 plants, was used to clone DNA that flanks the left end of the T-DNA insert. The availability of DNA from the region interrupted by the insert has allowed initial characterization of the wild-type GL1 gene and will permit the eventual cloning and sequencing of this developmentally interesting gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号